| 研究生: |
黃鈺婷 Huang, Yu-Ting |
|---|---|
| 論文名稱: |
榕果功能性性狀之種間及種內差異及其生態關聯 Interspecific and intraspecific differences in fig functional traits and their ecological correlations |
| 指導教授: |
李亞夫
Lee, Ya-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 榕屬植物 、雌雄同株 、雌雄異株 、榕果功能性性狀 、結實策略 、大葉雀榕 、雀榕 、金氏榕 、澀葉榕 |
| 外文關鍵詞: | Ficus, monoecious, dioecious, functional traits, fruiting strategies |
| 相關次數: | 點閱:117 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全世界約有800種榕屬植物 (Ficus, figs) 廣泛分佈於熱帶和亞熱帶地區,其生存於多樣的棲地類型並展現各種生活型態。 榕果 (syconium) 複雜的生活史中包含榕小蜂 (fig wasps) 授粉與食果動物 (frugivores) 協助傳播種子這兩個動−植物互動過程,並有雌雄同株 (monoecious) 和異株 (gynodioecious或functionally dioecious) 的種間生殖差異。 雌雄同株物種往往單一果期短、果量大、且榕果成熟同步,榕果兼顧產生種子與供養小蜂。 異株物種則通常果期長、果量小、且榕果成熟不同步,族群中部分植株負擔雌性功能,產出具有種子的榕果以完成種子傳播,其他植株則扮演雄性角色,產生花粉且生成供養小蜂的癭果。 由於不同生殖系統的結實特性和性別功能差異,相較於雌雄同株,雌雄異株之雌株可能投資較多的繁殖努力在最大化種子量,或者增加動物取食榕果的回饋,像是果肉量、水分、和營養成分等,以利於吸引食果動物並幫助種子傳播。然而,即使在相同的生殖系統中,種間榕果大小變異仍很大,可能因此限制了植株資源的分配,進而影響榕果的性狀。
此外,種內株間可能展現不同的生活史策略,在資源受限的前提下,植株對於繁殖方面的資源投資可能會隨著植株年齡或大小增加而提升。 另一方面,雌雄同株榕果在兼顧種子和榕小蜂的情況下,植株可能必須經由調整果期間的資源分配,使其結實量和榕果性狀產生變異,以適應季節性造成的榕小蜂、食果動物、及物理條件差異。 不過,雌雄同株榕樹植株每年結實的時間皆會有所變動,若能量的獲得與累積能量之時日有關,則可能影響每次果期所能獲得的能量,進而影響榕果的產出。
本研究針對恆春熱帶植物園區內的雌雄同株的大葉雀榕 (F. caulocarpa (Miq.) Miq., large leaf figs) 與雀榕 (F. subpisocarpa Gagnep., fruit fig trees),及雌雄異株的金氏榕 (F. ampelas Burm. f., King's figs) 與澀葉榕 (F. irisana Elm., rough-leaved figs) 雌株,探討種間和種內之榕果功能性性狀 (functional traits) 差異與其各種生態特性之關聯,並測試以下假說。 假說 (一):種間生殖系統和榕果大小差異與其榕果的功能性性狀有關。 因生殖系統差異之故,榕果在雌雄功能分配和結實模式方面皆有所不同,進而可能影響植物的繁殖投資,使雌雄異株物種可以投資更多資源在每一顆榕果上,增加榕果的種子量或對食果動物的吸引力,以利種子傳播。 因此我預期 (1) 相較於雌雄同株,雌雄異株雌株榕果會有較高的單位體積種子量和較低的果肉-種子比,或者單位體積種子量和果肉-種子比皆較高。 營養成分的部分,我則預期 (2) 相較於雌雄同株,雌雄異株雌株榕果有較高的水分和動物易消化利用的營養成分,而不易消化之成分含量則較低。
另一方面,榕果大小可能也會限制植物的資源投資,即使在相同的生殖系統中,不同榕果大小之物種會造成性狀產生變異,所以在榕果的形質方面我預期 (3) 相同生殖系統的物種間,較大的榕果有較高的單位體積種子量但果肉-種子比較低。 而水分和營養成分方面我則預期 (4) 相同生殖系統的物種間,較大的榕果有較高的水分及碳水化合物含量,而較小的榕果則有較高的脂質含量。
假說 (二):種內株間結實量或榕果性狀差異與植株大小之相關特性有關。 根據生活史理論,植株在資源受限的情況下,隨著年齡和植株大小的增長,會逐漸將資源投資在繁殖方面,進而增加其結實量或果實和種子的品質。 於是我預期和植株大小相關之胸高直徑、樹高、或樹冠體積會與其結實量或是榕果大小及種子數量呈正相關。
假說 (三):雌雄同株種內榕果性狀及結實量變異與天氣、榕小蜂、及食果動物的季節性變化有關聯。 雌雄同株榕果內可用之雌花數量與氣溫呈正向關係,且小蜂的數量和壽命也有季節性差異,進而可能影響了榕果與榕小蜂之間的交互作用,使榕果性狀產生變異。 因此我預期 (1) 相較於乾冷季節,濕熱季節果期的榕果內部種子量和種子-蟲癭比會較高。 此外,環境中的天氣因子和食果動物的季節性需求變化可能也影響了族群或個體內的季節性榕果性狀變異,所以我預期 (2) 相較於乾冷季節,濕熱季節果期的榕果體積較大,水分、果肉乾重、果肉-種子比、碳水化合物、蛋白質、及鈣含量較高,脂質含量則較低。 不過,榕果果肉所含之纖維為動物所不偏好的成分,而灰分則可能一年四季皆為影響動物生理的重要成分,從而使我預期 (3) 榕果果肉纖維和灰分含量沒有季節性差異。 另一方面,根據生活史策略和能量權衡的概念,依照前述的榕果季節性變化趨勢,我預期 (4) 相較於乾冷季節,濕熱季節果期的結實量較低。
最後我測試假說 (四):雌雄同株每次果期的繁殖表現會被之前累積能量的時間長短影響。 植物產果會消耗大量的資源,因此其能量的獲得和累積會影響每次產果。 在榕屬植物中,雌雄同株榕樹個體每年結實的時間皆會有所變動,可能使每次果期累積能量的時間不同,進而影響其果實或結實量的生產結果。 因此,我預期當果期間隔時間和發育期時間越長時,該次果期的榕果體積會越大或結實量越多。
本研究從2013年3月至2015年2月在恆春熱帶植物園區進行四種榕屬植物的物候調查及榕果採集。 我搜尋園區內步道兩旁及林緣,選取會結果且能夠採集和觀測的植株,作為定期調查和取樣的個體。 本研究最終使用大葉雀榕13棵、雀榕11棵、金氏榕雌株9棵、及澀葉榕雌株8棵,並以每週一次的頻度調查其物候變化和結實量。 我於研究期間收集植株的成熟期榕果,雌雄異株兩物種植株皆僅採收一次果期,而雌雄同株兩物種植株皆盡可能採收至少兩次果期,以比較植株果期間季節性差異,最終獲得大葉雀榕27個果期和雀榕19個果期。 我將採集之榕果測量並記錄其長、寬、高、濕重、乾重、果肉乾重、種子量和總乾重、及蟲癭量,並計算出榕果體積、含水量、單位體積種子量、果肉-種子比、及種子-蟲癭比。 乾燥果肉則進行營養成分分析。
本研究結果顯示四種榕屬植物因生殖系統和榕果大小差異而反應出不同的榕果形質和營養成分性狀,展現出了不同的結實策略。 雌雄同株的大葉雀榕和雀榕在個體間結實不同步,因此幾乎終年皆有植株帶有成熟榕果,結實株數大致上平均分佈在每個月份。 雌雄同株個體內榕果成熟同步且果期短,並且在單位時間內的熟果量很多,但榕果單位體積種子量和水分含量少,不過果肉-種子比高,果肉營養成分含有較高的脂質和纖維。 雀榕的榕果大於大葉雀榕,但植株熟果期結實量較低且榕果單位體積種子量少,不過,榕果含水量和碳水化合物含量較高;而大葉雀榕榕果雖然水分含量低,且不易消化之纖維和脂質含量高,但結實量遠高於其他榕屬植物。
雌雄異株的部分,金氏榕和澀葉榕雌株在個體間結果較為同步,高度聚集在6至8月和10月至12月生產成熟榕果。 雌雄異株雌株個體內榕果成熟不同步且果期長,在單位時間內的熟果量不多,榕果果肉-種子比低,但水分和果肉碳水化合物含量高,榕果單位體積種子量多,使得每顆榕果的種子傳播量較高。 澀葉榕的榕果大於金氏榕,但植株熟果期結實量較低,且榕果單位體積種子量少,但榕果果肉-種子比、含水量、和碳水化合物含量較高;不過,金氏榕的果肉蛋白質和鈣含量是四種榕樹中最高的。
在探討種內植株大小相關之特性與其生產之結實量或果實性狀的關聯中,只有大葉雀榕植株結實量與其胸高直徑有顯著正相關。 而雀榕、金氏榕、和澀葉榕的結實量、榕果大小、及種子數量則與其植株大小相關之特性無顯著關聯,可能是由於其植株不如大葉雀榕,植株可長很大而使其大小差異明顯,故可找出其與結實量之關聯。 此外,雌雄異株也可能是受其可塑性及複雜的物候模式影響。
雌雄同株之大葉雀榕和雀榕榕果性狀部分有季節性變化,且親緣極近之兩物種展現完全不同的結實策略。 大葉雀榕濕季榕果有果肉-種子比較高之趨勢,而乾季產出的榕果則傾向體積較大、果肉乾重較重、及水分和脂質含量較高。 雀榕則為濕季榕果體積較大、水分含量較高、果肉乾重較重、種子-蟲癭比較高、及種子較多,而乾季產出的榕果則有果肉-種子比較高和蟲癭量較多的傾向。 此外,兩者的個體內結實量皆沒有一致的季節性改變。 兩物種種內植株個體變異極大,使不同植株之榕果性狀季節間變動程度和趨勢不一致,顯示出此物種結實模式的高度彈性。
不過,無論在整個族群或個體內,本研究中之大葉雀榕和雀榕榕果在反應性別功能的種子-蟲癭比上皆與榕果大小、種子量、及蟲癭量有直接和間接的相關,說明了雌雄同株與榕小蜂之間的緊密互動關係。 隨著榕果體積變大,種子量和蟲癭量增加,而種子-蟲癭比受種子量影響較大,故也因而隨之提升。
另一方面,本研究觀察到雌雄同株榕樹植株每年結實的時間確實有所變動,並發現大葉雀榕的果期間隔和發育期時間長度顯著影響之後果期的榕果體積。 而雀榕無論是榕果大小或結實量皆與果期間隔和發育期時間長度無關,其榕果大小的差異可能是受個體基因或生理所限制,但仍需更進一步的研究證實。 此外,兩物種之葉子與結實物候無明顯關聯,葉子狀態對繁殖結果的影響則有待更深入之生理研究。
本研究經由探討種間和種內榕果功能性性狀差異與榕屬植物其他特性和生態關聯之間的關係,提供了共域之四種榕屬植物在結實策略上的差異。 此研究結果不僅可說明在演化歷史上較古老之雌雄同株物種的族群生存優勢,還能更進一步探討榕屬植物結實策略對食果動物果實選擇和種子傳播效益之潛在影響。 不僅如此,在面對現今環境變遷影響,本研究也能提供熱帶和亞熱帶地區榕屬植物群聚之生態和演化動態相關的重要資訊。
Nearly half of fig species (Ficus, Moraceae) are monoecious. Their syconia support seed production and wasps rearing simultaneously, and generally emerge in large but shorter and synchronous crops. The rest species reproduce gynodioeciously with some plants as functional females produce only seeded syconia and in generally smaller but longer and asynchronous crops. The latter, compared to monoecious figs, may invest reproductive efforts to maximize seediness, or increase syconium pulp, water content, and nutritional rewards to better attract frugivores, either of which would aid to seed dispersal. Figs, however, vary in syconium size among species even in the same breeding system, thus may constraint their resource allocation. Within population, plants will invest more resource to reproduction with increasing age or tree size, and cause higher crop size or fruit and seed quality. Monoecious trees may also allocate the resource between crops that may encounter seasonal changes of weather, fig wasps, and frugivores, and their syconium size may be regulate by the time to accumulate reserves for crop production. This study conducted phenology survey, measured syconium morphological traits, and analyzed nutrient contents for monoecious F. caulocarpa and F. subpisocarpa and dioecious F. ampelas and F. irisana in Hengchun Tropical Botanical Garden, to examine the relationships of inter- and intra-specific fig functional traits and their ecological correlations. Dioecious syconia appeared to have higher seediness, carbohydrate, and water contents, whereas monoecious syconia tended to have higher pulp-seed ratio, fiber, and lipid contents. Within the same breeding system, large-sized F. irisana and F. subpisocarpa had lower seediness but higher carbohydrate and water contents. Within populations, only F. caulocarpa ‘s plant sizes positively correlated to their crop sizes. Moreover, the two monoecious figs both showed partially seasonally change in syconium traits, and their trends were converse but all good for seed dispersal. Ficus caulocarp’s syconium volumes were also affected by the durations of syconium developmental period and fruiting interval, which positive correlated to energy accumulation. The results generally support inter- and intra-specific differences in fig functional traits are correlated to their fruiting strategies aiding to syconium removal and seed dispersal by frugivores.
Association of Official Agricultural Chemists. 1995. Official methods of analysis of AOAC
International, 16th edition. AOAC International, Washington, USA.
Bain, A., L.-S. Chou, H.-Y. Tzeng, Y.-C. Ho, Y.-P. Chiang, W.-H. Chen, Y.-T. Chio,
G.-Y. Li, H.-W. Yang, and F. Kjellberg. 2014a. Plasticity and diversity of the phenology of dioecious Ficus species in Taiwan. Acta Oecologica 57: 124-134.
Bain, A., H.-Y. Tzeng, W.-J. Wu, and L.-S. Chou. 2015. Ficus (Moraceae) and fig wasps (Hymenoptera: Chalcidoidea) in Taiwan. Botanical Studies 56: 11.
Bairlein, F. 1996. Fruit-eating in brids and its nutritional consequences. Comparative Biochemistry and Physiology A 113: 215-224.
Bentos, T. V., R. C. G. Mesquita, J. L. C. Camargo, and G. B. Williamson. 2014. Seed and fruit tradeoffs - the economics of seed packaging in Amazon pioneers. Plant Ecology and Diversity 7: 371-382.
Berg, C. C. 1989. Classification and distribution of Ficus. Experientia 45: 605-611.
Berg, C. C. and E. J. H. Corner. 2005. Moraceae (Ficus). In H. P. Nooteboom, editor. Flora Malesiana, Series I - Seed plants. National Herbarium Nederlands, Leiden, Netherlands.
Berman, M. E. and T. M. DeJong. 1996. Water stress and crop load effects on fruit fresh and dry weights in peach (Prunus persica). Tree Physiology 16: 859-864.
Berry, W. L. and C. M. Johnson. 1966. Determination of calcium and magnesium in plant material and culture solutions, using atomic-absorption spectroscopy. Applied Spectroscopy 20: 209-211.
BirdLife International. 2014. Species factsheet: Alcippe morrisonia, Dendrocitta formosae, Hypsipetes leucocephalus, Psilopogon nuchalis, Pycnonotus taivanus, Treron sieboldii, Turdus chrysolaus, Turdus iliacus, Turdus pallidus. Available at www.birdlife.org.
Blendinger, P. G., B. A. Loiselle, and J. G. Blake. 2008. Crop size, plant aggregation, and microhabitat type affect fruit removal by birds from individual melastome plants in the Upper Amazon. Oecologia 158: 273-283.
Bollen, A., L. van Elsacker, and J. U. Ganzhorn. 2004. Tree dispersal strategies in the littoral forest of Sainte Luce (SE-Madagascar). Oecologia 139: 604-616.
Bolmgren, K. and O. Eriksson. 2010. Seed mass and the evolution of fleshy fruits in angiosperms. Oikos 119: 707-718.
Bronstein, J. L. and K. Hoffmann. 1987. Spatial and temporal variation in frugivory at a Neotropical fig, Ficus pertusa. Oikos 49: 261-268.
Bronstein, J. L. and M. Hossaert‐McKey. 1996. Variation in reproductive success within a subtropical fig/pollinator mutualism. Journal of Biogeography 23: 433-446.
Calviño-Cancela, M. and J. Martín-Herrero. 2009. Effectiveness of a varied assemblage of seed dispersers of a fleshy-fruited plant. Ecology 90: 3503-3515.
Cardona, W., G. Kattan, and P. C. Ulloa. 2013. Non‐pollinating fig wasps decrease pollinator and seed production in Ficus andicola (Moraceae). Biotropica 45: 203-208.
Cazetta, E., H. M. Schaefer, and M. Galetti. 2008. Does attraction to frugivores or defense
against pathogens shape fruit pulp composition? Oecologia 155: 277-286.
Chapman, C. A., L. J. Chapman, R. Wangham, K. Hunt, D. Gebo, and L. Gardner. 1992. Estimators of fruit abundance of tropical trees. Biotropica 24: 527-531.
Cipollini, M. L. and D. J. Levey. 1997. Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal.
American Naturalist 150: 346-372.
Conklin, N. L. and R. W. Wrangham. 1994. The value of figs to a hind-gut fermenting frugivore: a nutritional analysis. Biochemical Systematics and Ecology 22: 137-151.
Corlett, R. T. 1996. Characteristics of vertebrate-dispersed fruits in Hong Kong. Journal of Tropical Ecology 12: 819-833.
Crone, E. E., E. Miller, and A. Sala. 2009. How do plants know when other plants are flowering? Resource depletion, pollen limitation and mast‐seeding in a perennial wildflower. Ecology Letters 12: 1119-1126.
Curtis, D. J. 2004. Diet and nutrition in wild mongoose lemurs (Eulemur mongoz) and their implications for the evolution of female dominance and small group size in lemurs. American Journal of Physical Anthropology 124: 234-247.
Damstra, K. S. J., S. Richardson, and B. Reeler. 1996. Synchronized fruiting between trees of Ficus thonningii in seasonally dry habitats. Journal of Biogeography 23: 495-500.
Davidar, P. and E. S. Morton. 1986. The relationship between fruit crop sizes and fruit removal rates by birds. Ecology 67: 262-265.
Debussche, M., J. Cortez, and I. Rimbault. 1987. Variation in fleshy fruit composition in the Mediterranean region: the importance of ripening season, life-form, fruit type and geographical distribution. Oikos 49: 244-252.
De Franceschi, P., T. Stegmeir, A. Cabrera, E. van der Knaap, U. R. Rosyara, A. M. Sebolt, L. Dondini, E. Dirlewanger, J. Quero-Garcia, J. A. Campoy, and A. F. Iezzoni. 2013. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Molecular Breeding 32: 311-326.
del Rio, C. M., H. G. Baker, and I. Baker. 1992. Ecological and evolutionary implications
of digestive processes: bird preferences and the sugar constituents of floral nectar and fruit pulp. Experientia 48: 544-551.
Devlin, B. 1989. Components of seed and pollen yield of Lobelia cardinalis: variation and correlations. American Journal of Botany 76: 204-214.
Dorken, M. E. and S. C. H. Barrett. 2003. Life‐history differentiation and the maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae). Evolution 57: 1973-1988.
Dumont, E. R. 2004. Preferences of fig wasps and fruit bats for figs of
functionally dioecious Ficus pungens. Journal of Tropical Ecology 20: 233-238.
Edwards, W. 2005. Within- and between-species patterns of allocation to pulp and seed in vertebrate dispersed plants. Oikos 110: 109-114.
Encinas‐Viso, F., T. A. Revilla, E. van Velzen, and R. S. Etienne. 2014. Frugivores and cheap fruits make fruiting fruitful. Journal of Evolutionary Biology 27: 313-324.
Eriksson, O. and J. Ehrlén. 1991. Phenological variation in fruit characteristics in vertebrate-dispersed plants. Oecologia 86: 463-470.
Foster, M. S. 1990. Factors influencing bird foraging preferences among conspecific fruit trees. Condor 92: 844-854.
Fuentes, M. 1994. Diets of fruit-eating birds: what are the causes of interspecific differences? Oecologia 97: 134-142.
Galetti, M., M. A. Pizo, and L. P. C. Morellato. 2011. Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotropica 11: 181-193.
Galil, J. and D. Eisikowitch. 1968. On the pollination ecology of Ficus sycomorus in East Africa. Ecology 49: 259-269.
Gautier-Hion, A., J.-M. Duplantier, R. Quris, F. Feer, C. Sourd, J.-P. Decoux, G. Dubost,
L. Emmons, C. Erard, and P. Hecketsweiler. 1985. Fruit characters as a basis of
fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia 65: 324-337.
Geber, M. A. and L. R. Griffen. 2003. Inheritance and natural selection on functional traits. International Journal of Plant Sciences 164: 21-42.
Harrison, R. D. 2003. Fig wasp dispersal and the stability of a keystone plant resource in Borneo. Proceedings of the Royal Society of B: Biological Sciences 270: S76-S79.
Harrison, R. D. 2005. Figs and the diversity of tropical rainforests. Bioscience 55: 1053-1064.
Harrison, R. D., N. Rønsted, L. Xu, J.-Y. Rasplus, and A. Cruaud. 2012. Evolution of
fruit traits in Ficus subgenus Sycomorus (Moraceae): to what extent do frugivores determine seed dispersal mode? PLoS One 7: e38432.
Harrison, R. D. and M. Shanahan. 2005. Seventy-seven ways to be a fig: overview of a diverse plant assemblage. Pages 111-127 in D. Roubik, S. Sakai, and A. A. Hamid, editors. Pollination Ecology and the Rain Forest. Springer, New York, USA.
Harrison, R. D. and N. Yamamura. 2003. A few more hypotheses for the evolution of dioecy in figs (Ficus, Moraceae). Oikos 100: 628-635.
Harrison, R. D., N. Yamamura, and T. Inoue. 2000. Phenology of a common roadside fig in Sarawak. Ecological Research 15: 47-61.
Hemborg, Å. M. and P. S. Karlsson. 1998. Altitudinal variation in size effects on plant reproductive effort and somatic costs of reproduction. Ecoscience 5: 517-525.
Herre, E. A. 1996. An overview of studies on a community of Panamanian figs. Journal of Biogeography 23: 593-607.
Herre, E. A., K. C. Jandér, and C. A. Machado. 2008. Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annual Review of Ecology Evolution and Systematics 39: 439-458.
Herrera, C. M. 1981. Fruit variation and competition for dispersers in natural populations of Smilax aspera. Oikos 36: 51-58.
Herrera, C. M. 1982a. Seasonal variation in the quality of fruits and diffuse coevolution between plants and avian dispersers. Ecology 63: 773-785.
Herrera, C. M. 1982b. Breeding systems and dispersal-related maternal reproductive effort of southern Spanish bird-dispersed plants. Evolution 36: 1299-1314.
Herrera, C. M. 1985. Determinants of plant-animal coevolution: the case of mutualistic dispersal of seeds by vertebrates. Oikos 44: 132-141.
Herrera, C. M. 1987. Vertebrate-dispersed plants of the Iberian Peninsula: a study of
fruit characteristics. Ecological Monographs 57: 305-331.
Herrera, C. M. 1988. The fruiting ecology of Osyris quadripartita: individual variation and evolutionary potential. Ecology 69: 233-249.
Herrera, C. M. 1989. Seed dispersal by animals: a role in angiosperm diversification?
American Naturalist 133: 309-322.
Ho, L. C. 1992. Fruit growth and sink strength. Pages 101-124 in C. Marshall and J. Grace, editors. Fruit and Seed Production: Aspects of Development, Environmental Physiology and Ecology. Cambridge University Press, Cambridge, UK.
Hossaert-McKey, M. and J. L. Bronstein. 2001. Self-pollination and its costs in a monoecious fig (Ficus aurea, Moraceae) in a highly seasonal subtropical environment. American Journal of Botany 88: 685-692.
Howe, H. F. and G. F. Estabrook. 1977. On intraspecific competition for avian dispersers in tropical trees. American Naturalist 111: 817-832.
Howe, H. F. and J. Smallwood. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13: 201-228.
Hsu, C.-L., W. Chen, Y.-M. Weng, and C.-Y. Tseng. 2003. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry 83: 85-92.
Inglese, P., P. Costanza, G. Gugliuzza, G. Inglese, and G. Liguori. 2010. Influence of within-tree and environmental factors on fruit quality of cactus pear
(Opuntia ficus-indica) in Italy. Fruits 65: 179-189.
Isagi, Y., K. Sugimura, A. Sumida, and H. Ito. 1997. How does masting happen and synchronize? Journal of Theoretical Biology 187: 231-239.
Izhaki, I. 2002. The role of fruit traits in determinin fruit removal in East Mediterranean ecosystem. Pages 161-175 in D. J. Levey, W. R. Silva, and M. Galetti, editors.
Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CABI, London, UK.
Izhaki, I., E. Tsahar, I. Paluy, and J. Friedman. 2002. Within population variation and interrelationships between morphology, nutritional content, and secondary compounds of Rhamnus alaternus fruits . New Phytologist 156: 217-223.
Janzen, D. H. 1979. How to be a fig. Annual Review of Ecology and Systematics 10: 13-51.
Janzen, D. H. 1980. When is it coevolution? Evolution 34: 611-612.
Jevanandam, N., A. G. R. Goh, and R. T. Corlett. 2013. Climate warming and the potential extinction of fig wasps, the obligate pollinators of figs. Biology Letters 9: 20130041.
Jordano, P. 1995. Frugivore-mediated selection on fruit and seed size: birds and
St. Lucie's cherry, Prunus mahaleb. Ecology 76: 2627-2639.
Jorhem, L. 2000. Determination of metals in foods by atomic absorption spectrometry after dry ashing: NMKL collaborative study. Journal of AOAC International 83: 1204-1211.
Jousselin, E., J.-Y. Rasplus, and F. Kjellberg. 2003. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution 57: 1255-1269.
Kalko, E. K. V., E. A. Herre, and C. O. Handley. 1996. Relation of fig fruit characteristics to fruit‐eating bats in the New and Old World tropics. Journal of Biogeography 23: 565-576.
Kitamura, S., T. Yumoto, P. Poonswad, P. Chuailua, K. Plongmai, T. Maruhashi, and
N. Noma. 2002. Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand. Oecologia 133: 559-572.
Kjellberg, F. and S. Maurice. 1989. Seasonality in the reproductive phenology of Ficus:
its evolution and consequences. Experientia 45: 653-660.
Korine, C., E. K. V. Kalko, and E. A. Herre. 2000. Fruit characteristics and factors affecting fruit removal in a Panamanian community of strangler figs. Oecologia 123: 560-568.
Krishnan, A. and R. M. Borges. 2014. Parasites exert conflicting selection pressures to affect reproductive asynchrony of their host plant in an obligate pollination mutualism. Journal of Ecology 102: 1329-1340.
Krishnan, A., G. K. Pramanik, S. V. Revadi, V. Venkateswaran, and R. M. Borges. 2014. High temperatures result in smaller nurseries which lower reproduction of pollinators and parasites in a brood site pollination mutualism. PLoS One 9: e115118.
Lambert, F. R. 1992. Fig dimorphism in bird-dispersed gynodioecious Ficus. Biotropica 24: 214-216.
Lambert, F. R. and A. G. Marshall. 1991. Keystone characteristics of bird-dispersed Ficus in a Malaysian lowland rain forest. Journal of Ecology 79: 793-809.
Laska, M. S. and E. W. Stiles. 1994. Effects of fruit crop size on intensity of fruit removal in Viburnum prunifolium (Caprifoliaceae). Oikos 69: 199-202.
Lee, Y.-F., Y.-M. Kuo, Y.-H. Lin, W.-C. Chu, S.-H. Wu, H.-H. Wang, and J.-T. Chao. 2008. Spatiotemporal variation in avian diversity and the short-term effects of typhoons in tropical reef-karst forests on Taiwan. Zoological Science 25: 593-603.
Levey, D. J. 1987. Seed size and fruit-handling techniques of avian frugivores.
American Naturalist 129: 471-485.
Lin, S., N. Zhao, and Y. Chen. 2008. Phenology and the production of seeds and wasps in Ficus microcarpa in Guangzhou, China. Symbiosis 45: 101-105.
Lomáscolo, S. B., D. J. Levey, R. T. Kimball, B. M. Bolker, and H. T. Alborn. 2010. Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences of the United States of America 107: 14668-14672.
Lomáscolo, S. B., P. Speranza, and R. T. Kimball. 2008. Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia 156: 783-796.
Lord, J. M., A. S. Markey, and J. Marshall. 2002. Have frugivores influenced the evolution of fruit traits in New Zealand? Pages 55-68 in D. J. Levey, W. R. Silva, and M. Galetti, editors. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CABI, London, UK.
Lorts, C. M., T. Briggeman, and T. Sang. 2008. Evolution of fruit types and seed dispersal: a phylogenetic and ecological snapshot. Journal of Systematics and Evolution 46: 396-404.
Lotan, A. and I. Izhaki. 2013. Could abiotic environment shape fleshy fruit traits?
A field study of the desert shrub Ochradenus baccatus. Journal of Arid Environments 92: 34-41.
Marcelis, L. F. M. and L. R. B. Hofman-Eijer. 1993. Effect of temperature on the growth of individual cucumber fruits. Physiologia Plantarum 87: 321-328.
Marshall, C. and M. A. Watson. 1992. Ecological and physiological aspects of reproductive allocation. Pages 173-202 in C. Marshall and J. Grace, editors. Fruit and Seed Production: Aspects of Development, Environmental Physiology and Ecology. Cambridge University Press, Cambridge, UK.
McFadyen, L. M., R. J. Hutton, and E. W. R. Barlow. 1996. Effects of crop load on fruit water relations and fruit growth in peach. Horticultural Science 71: 469-480.
Melo, G. L., N. C. Penatti, and J. Raizer. 2011. Fruit of a contrasting colour is more detectable by frugivores. Journal of Tropical Ecology 27: 319-322.
Milton, K. 1991. Leaf change and fruit production in six Neotropical Moraceae species. Journal of Ecology 79: 1-26.
Milton, K., D. M. Windsor, D. W. Morrison, and M. A. Estribi. 1982. Fruiting phenologies of two Neotropical Ficus species. Ecology 63: 752-762.
Molina, M., M. Pardo-De-Santayana, L. Aceituno, R. Morales, and J. Tardío. 2011. Fruit production of strawberry tree (Arbutus unedo L.) in two Spanish forests. Forestry 84: 419-429.
Mokotjomela, T. M., C. F. Musil, and K. J. Esler. 2013. Do frugivorous birds concentrate their foraging activities on those alien plants with the most abundant and nutritious fruits in the South African Mediterranean-climate region? Plant Ecology 214: 49-59.
Morrison, D. A. and P. J. Myerscough. 1989. Temporal regulation of maternal investment in populations of the perennial legume Acacia suaveolens. Ecology 70: 1629-1638.
Nathan, R. and H. C. Muller-Landau. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15: 278-285.
Nefdt, R. J. C. and S. G. Compton. 1996. Regulation of seed and pollinator production in the fig-fig wasp mutualism. Journal of Animal Ecology 65: 170-182.
O'Brien, T. G., M. F. Kinnaird, E. S. Dierenfeld, N. L. Conklin-Brittain, R. W. Wrangham, and S. C. Silver. 1998. What's so special about figs? Nature 392: 668.
Ortiz-Pulido, R. and V. Rico-Gray. 2000. The effect of spatio-temporal variation in understanding the fruit crop size hypothesis. Oikos 91: 523-527.
Parciak, W. 2002. Environmental variation in seed number, size, and dispersal of a
fleshy-fruited plant. Ecology 83: 780-793.
Patel, A. and D. McKey. 1998. Sexual specialization in two tropical dioecious figs. Oecologia 115: 391-400.
Patiño, S., E. A. Herre, and M. T. Tyree. 1994. Physiological determinants of Ficus fruit temperature and implications for survival of pollinator wasp species: comparative physiology through an energy budget approach. Oecologia 100: 13-20.
Pereira, R. A. S., E. Rodrigues, and A. de Oliveira Menezes Jr. 2007. Phenological patterns of Ficus citrifolia (Moraceae) in a seasonal humid-subtropical region in Southern Brazil. Plant Ecology 188: 265-275.
Peng, Y.-Q., S. G. Compton, and D.-R. Yang. 2010. The reproductive success of
Ficus altissima and its pollinator in a strongly seasonal environment: Xishuangbanna, Southwestern China. Plant Ecology 209: 227-236.
Pizo, M. A. 2002. The seed-dispersers and fruit syndromes of Myrtaceae in the
Brazilian Atlantic Forest. Pages 129-143 in D. J. Levey, W. R. Silva, and M. Galetti, editors. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. CABI, London, UK.
Poulin, B., S. J. Wright, G. Lefebvre, and O. Calderón. 1999. Interspecific synchrony and asynchrony in the fruiting phenologies of congeneric bird-dispersed plants in Panama. Journal of Tropical Ecology 15: 213-227.
Pratt, T. K. and E. W. Stiles. 1985. The influence of fruit size and structure on composition of frugivore assemblages in New Guinea. Biotropica 17: 314-321.
Ragusa-Netto, J. 2002. Fruiting phenology and consumption by birds in
Ficus calyptroceras (Miq.) Miq.(Moraceae). Brazilian Journal of Biology 62: 339-346.
Rathcke, B. and E. P. Lacey. 1985. Phenological patterns of terrestrial plants.
Annual Review of Ecology and Systematics 16: 179-214.
Razali, N. M. and Y. B. Wah. 2011. Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics 2: 21-33.
Reynolds, S. J. and C. M. Perrins. 2010. Dietary calcium availability and reproduction in birds. Pages 31-74 in C. F. Thompson, editor. Current Ornithology. Springer,
New York, USA.
Rode, K. D., C. A. Chapman, L. J. Chapman, and L. R. McDowell. 2003. Mineral resource availability and consumption by colobus in Kibale National Park, Uganda. International Journal of Primatology 24: 541-573.
Rodrigo, M.-J., B. Alquézar, F. Alférez, and L. Zacarías. 2012. Biochemistry of fruits and fruit products. Pages 13-34 in N. K. Sinha, J. S. Sidhu, J. Barta, J. S. B. Wu, and
M. P. Cano, editors. Handbook of Fruits and Fruit Processing, Second Edition.
John Wiley and Sons, Ltd., New Jersey, USA.
Russo, S. E. 2003. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): implications for selection. Oecologia 136: 80-87.
Russo, S. E., S. Portnoy, and C. K. Augspurger. 2006. Incorporating animal behavior into seed dispersal models: implications for seed shadows. Ecology 87: 3160-3174.
Sallabanks, R. 1993. Hierarchical mechanisms of fruit selection by an avian frugivore. Ecology 74: 1326-1336.
Sanitjan, S. and J. Chen. 2009. Habitat and fig characteristics influence the bird assemblage and network properties of fig trees from Xishuangbanna, South-West China. Journal of Tropical Ecology 25: 161-170.
Sanmee, R., B. Dell, P. Lumyong, K. Izumori, and S. Lumyong. 2003. Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chemistry 82: 527-532.
Saracco, J. F., J. A. Collazo, M. J. Groom, and T. A. Carlo. 2005. Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni trees in
Puerto Rico. Biotropica 37: 81-87.
Schaefer, H. M., V. Schmidt, and H. Winkler. 2003. Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos 102: 318-328.
Sekercioglu, C. H. 2006. Increasing awareness of avian ecological function. Trends in Ecology and Evolution 21: 464-471.
Shanahan, M. and S. G. Compton. 2001. Vertical stratification of figs and fig-eaters in a Bornean lowland rain forest: how is the canopy different? Plant Ecology 153: 121-132.
Shanahan, M., S. So, S. G. Compton, and R. Corlett. 2001. Fig-eating by vertebrate frugivores: a global review. Biological Reviews 76: 529-572.
Siitari, H., J. Honkavaara, and J. Viitala. 1999. Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proceedings of the Royal Society B 266: 2125-2129.
Snow, D. W. 1971. Evolutionary aspects of fruit-eating by birds. Ibis 113: 194-202.
Snow, D. W. 1981. Tropical frugivorous birds and their food plants: a world survey. Biotropica 13: 1-14.
Sork, V. L. 1993. Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp.). Vegetatio 107/108: 133-147.
Spencer, H., G. Weiblen, and B. Flick. 1996. Phenology of Ficus variegata in a seasonal wet tropical forest at Cape Tribulation, Australia. Journal of Biogeography 23: 467-475.
Stanley, M. C. and A. Lill. 2002. Importance of seed ingestion to an avian frugivore: an experimental approach to fruit choice based on seed load. Auk 119: 175-184.
Stapanian, M. A. 1982. Evolution of fruiting strategies among fleshy-fruited plant species of eastern Kansas. Ecology 63: 1422-1431.
Stephenson, A. G. 1992. The regulation of maternal investment in plants. Pages 151-171 in C. Marshall and J. Grace, editors. Fruit and Seed Production: Aspects of Development, Environmental Physiology and Ecology. Cambridge University Press, Cambridge, UK.
Stiles, E. W. 1993. The influence of pulp lipids on fruit preference by birds. Vegetatio 107/108: 227-235.
Suleman, N., R. J. Quinnell, and S. G. Compton. 2013. Variation in inflorescence size in a dioecious fig tree and its consequences for the plant and its pollinator fig wasp.
Plant Systematics and Evolution 299: 927-934.
Tello, J. G. 2003. Frugivores at a fruiting Ficus in south-eastern Peru. Journal of Tropical Ecology 19: 717-721.
Terborgh, J. 1986. Keystone plant resources in the tropical forest. Pages 330-344 in
M. E. Soule, editor. Conservation Biology: the Science of Scarcity and Diversity. Sinauer Associates, Sunderland, Massachusetts, USA.
Thomas, S. C. 2011. Age-related changes in tree growth and functional biology: the role of reproduction. Pages 33-64 in F. C. Meinzer, B. Lachenbruch, and T. E. Dawson, editors. Size- and Age-related Changes in Tree Structure and Function. Springer,
New York, USA
Thompson, J. N. and M. F. Willson. 1979. Evolution of temperate fruit/bird interactions: phenological strategies. Evolution 33: 973-982.
Urquiza-Haas, T., J. C. Serio-Silva, and L. T. Hernández-Salazar. 2008. Traditional nutritional analyses of figs overestimates intake of most nutrient fractions: a study of Ficus perforata consumed by howler monkeys (Alouatta palliata mexicana). American Journal of Primatology 70: 432-438.
Valido, A., H. M. Schaefer, and P. Jordano. 2011. Colour, design and reward:
phenotypic integration of fleshy fruit displays. Journal of Evolutionary Biology 24: 751-760.
van Schaik, C. P., J. W. Terborgh, and S. J. Wright. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics 24: 353-377.
Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116: 882-892.
Wang, B. C. and T. B. Smith. 2002. Closing the seed dispersal loop. Trends in Ecology and Evolution 17: 379-385.
Wang, R.-W., J. Ridley, B.-F. Sun, Q. Zheng, D. W. Dunn, J. Cook, L. Shi, Y.-P. Zhang, and D. W. Yu. 2009. Interference competition and high temperatures reduce the virulence of fig wasps and stabilize a fig-wasp mutualism. PLoS One 4: e7802.
Wang, R.-W., L. Shi, S.-M. Ai, and Q. Zheng. 2008. Trade-off between reciprocal mutualists: local resource availability-oriented interaction in fig/fig wasp mutualism. Journal of Animal Ecology 77: 616-623.
Wang, R.-W., J.-X. Yang, and D.-R. Yang. 2005. Seasonal changes in the trade-off among fig-supported wasps and viable seeds in figs and their evolutionary implications. Journal of Integrative Plant Biology 47: 144-152.
Wang, S. Y. and M. J. Camp. 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae 85: 183-199.
Weiblen, G. D., S. B. Lomáscolo, R. Oono, and E. R. Dumont. 2010. Nutritional dimorphism in New Guinea dioecious figs. Biotropica 42: 656-663.
Wendeln, M. C., J. R. Runkle, and E. K. V. Kalko. 2000. Nutritional values of 14 fig species and bat feeding preferences in Panama. Biotropica 32: 489-501.
Wheelwright, N. T. 1985a. Competition for dispersers, and the timing of flowering and fruiting in a guild of tropical trees. Oikos 44: 465-477.
Wheelwright, N. T. 1985b. Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66: 808-818.
Wheelwright, N. T. 1993. Fruit size in a tropical tree species: variation, preference by birds, and heritability. Vegetatio 107/108: 163-174.
Wheelwright, N. T., W. A. Haber, K. G. Murray, and C. Guindon. 1984. Tropical
fruit-eating birds and their food plants: a survey of a Costa Rican lower montane forest. Biotropica 16: 173-192.
Wheelwright, N. T. and C. H. Janson. 1985. Colors of fruit displays of bird-dispersed plants in two tropical forests. American Naturalist 126: 777-799.
Whelan, C. J. and M. F. Willson. 1994. Fruit choice in migrating North American birds: field and aviary experiments. Oikos 71: 137-151.
Wiebes, J. T. 1979. Co-evolution of figs and their insect pollinators. Annual Review of Ecology and Systematics 10: 1-12.
Willson, M. F., A. K. Irvine, and N. G. Walsh. 1989. Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica 21: 133-147.
Willson, M. F., H. J. Michaels, R. I. Bertin, B. Benner, S. Rice, T. D. Lee, and
A. P. Hartgerink. 1990. Intraspecific variation in seed packaging. American Midland Naturalist 123: 179-185.
Wilson, A.-L. and C. T. Downs. 2012. Fruit nutritional composition and non-nutritive traits of indigenous South African tree species. South African Journal of Botany 78: 30-36.
Witmer, M. C. 2001. Nutritional interactions and fruit removal: cedar waxwing consumption of Viburnum opulus fruits in spring. Ecology 82: 3120-3130.
Worley, A. C. and L. D. Harder. 1996. Size-dependent resource allocation and costs of reproduction in Pinguicula vulgaris (Lentibulariaceae). Journal of Ecology 84: 195-206.
Wotton, D. M. and J. J. Ladley. 2008. Fruit size preference in the New Zealand pigeon (Hemiphaga novaeseelandiae). Austral Ecology 33: 341-347.
Wrangham, R. W., N. L. Conklin, G. Etot, J. Obua, K. D. Hunt, M. D. Hauser, and
A. P. Clark. 1993. The value of figs to chimpanzees. International Journal of Primatology 14: 243-256.
Wunderle Jr, J. M. 1997. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology and Management 99: 223-235.
Yao, J., N. Zhao, Y. Chen, X. Jia, Y. Deng, and H. Yu. 2005. Resource allocation for coevolved figs and fig wasps in monoecious figs: where and how are seeds and wasps produced? Symbiosis 39: 143-149.
Yeo, C. K. and H. T. W. Tan. 2009. Variation in reproductive output of Ficus superba despite aseasonal reproduction. Plant Ecology 205: 235-248.
Zar, J. H. 2010. Biostatistical analysis, fifth edition. Pearson Prentice Hall, Upper Saddle River, New Jersey, USA.
Zhang, F.-P., Y. Zhao, and D.-R. Yang. 2009. Dynamics variation of seeds and fig wasps on Ficus glaberrima in Xishuangbanna, SW China. Symbiosis 49: 71-75.
中央氣象局。2013-2015。恆春氣象站30天觀測資料。取自http://www.cwb.gov.tw。
台灣植物資訊整合查詢系統。2014。植物名彙與基本資訊。取自http://tai2.ntu.edu.tw/PlantInfo.php.
江允芃。2013。北臺灣雀榕與大葉雀榕之物候及小蜂種間關係。國立臺灣大學生態學與演化生物學研究所碩士論文。臺北,臺灣。
宋馥珊。2006。墾丁高位珊瑚礁森林鳥類及哺乳動物對三種榕屬植物榕果之利用。國立東華大學自然資源管理研究所碩士論文。花蓮,臺灣。
林國銓、邱文良、施炳霖。1991。恆春熱帶植物園步道兩側植群及土壤的受害
調查。林業試驗所研究報告季刊 6: 357-365。
范孟雯。2004。恆春熱帶植物園區台灣獼猴選果行為之研究。國立台灣大學生態學與演化生物學研究所碩士論文。臺北,臺灣。
張心怡。2010。五色鳥食物資源利用及其對種子傳播的影響。國立成功大學生物
多樣性研究所碩士論文。臺南,臺灣。
張雯淳。2003。嘉義地區金氏榕開花物候與授粉生態之研究。國立嘉義大學林業研究所碩士論文。嘉義,臺灣。
陳順宇。2005。多變量分析。華泰總經銷。臺北,臺灣。
陳燕玲。2000。澀葉榕 (Ficus irisana Elm.) 與榕果小蜂之物候週期及種間關係。
國立中興大學昆蟲學系碩士論文。臺中,臺灣。
曾喜育。2004。臺灣產榕屬植物分類之研究。國立中興大學森林學系研究所博士
論文。臺中,臺灣。
顏宏達。1985。動物營養學。華香園出版社。臺北,臺灣。