| 研究生: |
王玉琳 Wang, Yu-Lin |
|---|---|
| 論文名稱: |
觀察在長期給予大鼠電刺激程序中所引發的癲癇波之演變進程 The development of epileptic transients of afterdischarge during kindling procedure in rats |
| 指導教授: |
蘇文鈺
Su, W.Y. Alvin |
| 共同指導教授: |
蕭富仁
Shaw, Fu-Zen 梁勝富 Liang, Sheng-Fu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 癲癇波 、突波 、電刺激 、動作反應 、顳葉癲癇 |
| 外文關鍵詞: | Afterdischarges, Epileptic transients, Kindling, Motor response, Temporal lobe epilepsy |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電刺激是一種常用於動物實驗來誘發顳葉癲癇的方法。大部分的分析方法採用傳統的頻域分析法,來計算腦電波的光譜特徵。在本文中,我們同時採用時間域分析法以及頻率域分析法來觀察癲癇腦波的發展,並探討腦波與癲癇程度之相關性。在實驗中,我們刺激大鼠的大腦顳葉前端的扁桃核來誘發顳葉癲癇。每次的測驗的腦波與動作都被記錄下來。我們將每次的測驗依照最嚴重的身體反應進行了分組與各別分析:階段1(輕度),階段2,階段4和階段5(重度)。本實驗觀察低頻段的腦電波(4〜30HZ),並將癲癇腦波(>4Hz; >60μV)進行形態和振幅的量化。我們歸納了每個癲癇階段的腦波特徵並比較階段之間的腦波差異處。實驗結果證明,隨著電刺激的增加,大鼠的運動反應從局部性發作發展到全身性發作。腦電波的棘波群數量和其幅度也越來越複雜。棘波群的複雜程度與癲癇嚴重性呈現高度正相關。本實驗呈現時間域分析法以及頻率域分析法的觀察結果,並將兩者相互比較。我們發現,在時間域上提出的量測方法能以比較清楚以及簡單的方式描繪出癲癇誘發的腦電波的瞬態變化。以此結論,除了頻域分析法外,時間域也是在研究癲癇腦電波的發展時相當優異的的方析法。
Kindling is a common method to induce temporal lobe epilepsy in animals. Each kindling evokes the excited nerve activities. Most of previous analysis applied conventional frequency domain analysis on the spectra characteristics of EEG recordings. However, frequency domain features hardly depict the dynamic portrait of afterdischarges (AD). In this study, we aim to study the development of epileptic transients of kindled-induced AD from seizure onset zone (SOZ) and its relation to the motor response.
Thirteen adult Wistar rats were used in the experiments. Kindling was achieved by stimulating the right basolateral amygdala. The trials were grouped and analyzed according to the severest seizure stages. Both frequency domain and time domain analysis results were provided. In frequency domain analysis, there are three frequency bands: lower frequency band (LFB: 0–9Hz); middle frequency band (MFB: 9–12Hz); and higher frequency band (HFB: 12–30Hz). In time domain analysis, morphology and amplitude of epileptic transients (>60μV; >4Hz) were observed
Motor responses showed progression from complex partial seizure to generalized seizure. The complexity of AD highly correlates to the severity of behavioral stage. Density and amplitude of evoked epileptic transients increase in the complexity as well as the duration during kindling procedure.
This work introduced frequency and time domain analysis methods. The results of both analysis methods were presented and compared. We found that, the time domain features can depict the clearer portraits of the evoked epileptic transients in epileptogenesis in a more straightforward and clearer aspect. The morphology and amplitude of epileptic transients of kindled-induced AD was quantified and discussed. The evidences suggest that time domain analysis can also be a preferable method in the study of the progression of epileptiform EEG in kindling process, besides frequency domain analysis.
Aarabi A, Fazel-Rezai R, Aghakhani Y. (2009) “A fuzzy rule-based system for epileptic seizure detection in intracranial EEG,” Clinical Neurophysiology, 120(9):1648–1657.
Alexis D Boro, Sheryl Haut.; (2010) Focal EEG Waveform Abnormalities. eMedicine: Neurology.
Akman CI. (2009) Subclinical seizures in children diagnosed with localization-related epilepsy clinical and EEG characteristics. Epilepsy Behav; 16(1): 86–98.
Applegate CD, Burchfiel JL (1990) Evidence for a norepinephrine-dependent brain-stem substrate in the development of kindling antagonism. Epilepsy Res. 6:23–32.
Badawy RA, Macdonell RA, Jackson GD, Berkovic SF. (2009) Why do seizures in generalized epilepsy often occur in the morning? Neurology. 73(3):218–22.
Balasubramanian K, Obeid I. (2011) Fuzzy logic-based spike sorting system. J Neurosci Methods.198(1):125-34.
Boon P, Vonck K, De Herdt V, Van Dycke A, Goethals M, Goossens L, Van Zandijcke M, De Smedt T, Dewaele I, Achten R, Wadman W, Dewaele F, Caemaert J, Van Roost D (2007) Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48: 1551–1560.
Buckmaster PS (2004) Laboratory Animal Models of Temporal Lobe Epilepsy. Comp. Med. 54:473–485.
Burnham WM (1989) The GABA hypothesis of kindling: recent assay studies. Neurosci. and Biobehav. Rev.13:281–288.
Callahan PM, Paris JM, Cunningham KA, Shinnick-Gallagher P (1991) Decrease of GABA-immunoreactive neurons in the amygdala after electrical kindling in the rat. Brain Res. 555: 335–339.
Carrington CA, Gilby KL, McIntyre DC (2007) Effect of focal low-frequency stimulation on amygdala-kindled afterdischarge thresholds and seizure profiles in fast- and slow-kindling rat strains. Epilepsia, 48:1604–1613.
Chah E, Hok V, Della-Chiesa A, Miller JJH, O'Mara SM, Reilly RB. (2010) Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering. J. Neural Eng. 8 016006.
Chang DW, Liang SF, Young CP, Shaw FZ, Su AWY, Liu YD, Wang YL, Liu YC, Chen JJ, Chen CY. (2011) A Versatile Wireless Portable Monitoring System for Brain-Behavior Approaches, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.1: 440–450.
Chervin RD, Pierce PA, Connors BW (1988) Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J. Neurophysio. 60:1695–1713.
Connors BW (1984) Initiation of synchronized neuronal bursting in neocortex. Nature. 310: 685–87.
Cordeiro JG, Capurro A, Aertsen A, Cordeiro KK, Araújo JC, Schulze-Bonhage A (2009) Improvement in hippocampal kindling analysis through computational processing data. Arq. Neuropsiquiatr. 67: 677–683.
Daly DD, Pedley TA. Current Practice of Clinical Electroencephalography. (1997) New York: Raven-Lippincott; 3rd edition. 1997.
Davey BL, Fright WR, Carroll GJ, Jones RD (1989) Expert system approach to detection of epileptiform activity in the EEG. Med Biol Eng Comput. 27:365–370.
Engel J (1989) Seizure and Epilepsy Philadelphia. PA: Davis.
Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia. 42: 796–803.
Esteller R, Echauz J, Tcheng T, Litt B, Pless B. (2001) Line length : An efficient feature for seizure onset detection. International Conference of the IEEE Engineering in Medicine and Biology Society.
Faure C (1985) Attributed strings for recognition of epileptic transients in EEG. Int J Biomed Comput. 16: 217–229.
Gloor P (1975) Contributions of electroencephalography and electrocorticography inthe neurosurgical treatment of the epilepsies. Adv. Neurol. 8:59–105.
Goddard G, McIntyre D, Leech C. (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330.
Goddard GV (1983) The kindling model of epilepsy. Trends in Neurosciences 6:275–279.
Gschwandtner U (2009) EEG: a helpful tool in the prediction of psychosis. Eur Arch Psychiatry Clin Neurosci. 259(5): 257–62.
Guedes de Oliveira P, Queiroz C, Lopes de Silva F. (1983) Spike detection based on a pattern recognition approach using a microcomputer. Electroenceph clin. Neurophysiol. 56:97–103.
Huang ZJ, Cristo GD, Ango F. (2007) Development of GABA innervation in the cerebral and cerebellar cortices. Nature Rev. Neurosci. 8:673–686.
Hjorth, B. (1970) EEG analysis based on time domain properties. Electroencephalography and Clinical Neurophysiology. 29:306-310.
International Federation of Societies for Clinical Neurophysiology. (1974) A glossary of terms most commonly used by clinical electroencephalographers. Electroenceph. Clin Neurophysiol. 37(5):538–48.
Iasemidis L D, Sackellares J C, Zaveri H P, and Williams W J (1990) “Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures”. Brain Topography. 2:187–201.
International League Against Epilepsy. (1981) Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia. 22:489–501.
Isokawa M, Avanzini G, Finch DM, Babb TL, Levesque MF. (1991) Physiologic properties of human dentate granule cells in slices prepared from epileptic patients. Epilepsy Res. 9(3):242–50.
Jacobs J, Zijlmans M, Zelmann R, Olivier A, Hall J, Gotman J, Dubeau F (2010) Value of electrical stimulation and high frequency oscillations (80–500 Hz) in identifying epileptogenic areas during intracranial EEG recordings. Epilepsia 51: 573–582.
Jibiki I, Kubota T, Yamaguchi N. (1988) Acute kindling: interstimulation interval effects and spontaneous interictal or ictalepileptiform discharges. Jpn. J. Psychiatry Neurol. 42:315–321.
Jin X, Huguenard TR, Prince DA (2011) Reorganization of Inhibitory Synaptic Circuits in Rodent Chronically Injured Epileptogenic Neocortex. Cereb. Cortex. 21(5):1094–1104.
Jones NC, Kumar G, O’Brien TJ, Morris MJ, Rees SM, Salzberg MR (2009) Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats. Behav Brain Res 203:81–87.
Kaiftss EW, Racine RJ, Smith GK (1984) The development of inteftctal spike during kindling in the rat. Brain Res. 517:101–110.
Kamphuis W, Wadman W, Buijs RM, Lopes da Silva F.H (1986) Decrease in number of hippocampal gamma-aminobutyric acid (GABA) immunoreactive cells in the rat kindling model of epilepsy. Exp. Brain Res. 64: 491–495
Knowles WD, Awad IA, Nayel MH (1992) Differences of in vitro electrophysiology of hippocampal neurons from epileptic patients with mesiotemporal sclerosis versus structural lesions. Epilepsia. 33(4):601–9.
Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci. 23:2440–2452.
Leppik, I. E. (2000) “Contemporary diagnosis and management of the patient with epilepsy,” Handbooks in health care, Newton, Pennsylvania, USA, fifth edition.
Leung LS, Shen B (2006) Hippocampal partial kindling decreased hippocampal GABAB receptor efficacy and wet dog shakes in rats. Behav. Brain Res. 173:274–281.
Lewicki MS (1998) A review of methods for spike sorting: the detection and classification of neural action potentials. Network: Comput. Neural Syst. 9:R53–R78.
Li X, Ouyang G, Richards DA. (2007) “Predictability analysis of absence seizures with permutation entropy,” Epilepsy Research. 77:70–74.
Liang SF, Wang HC, Chang WL. (2010) “Combination of EEG Complexity and Spectral Analysis for Epilepsy Diagnosis and Seizure Detection”. EURASIP Journal on Advances in Signal Processing, 2010. ID 853434, 15 pages.
Liefaard LC, Ploeger BA, Molthoff CF, de Jong HW, Dijkstra J, van der Weerd L, Lammertsma AA, Danhof M, Voskuyl RA (2009) Changes in GABAA receptor properties in amygdala kindled animals: in vivo studies using [11C] flumazenil and positron emission tomography. Epilepsia. 50:88–98.
Loscher W (1997) Animal models of intractable epilepsy. Progress in Neurobiology. 53:239–258.
Loscher (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res. 50:105–123.
Lothman EW, Hatlelid JM, Zorumski CF. (1985) Kindling with rapidly recurring hippocampal seizures. Brain Res. 360, 83—91.
Lothman EW, Perlin JB, Salerno RA (1988) Response properties of rapidly recurring hippocampal seizures in rats. Epilepsy Res. 2:356–366.
Lothman EW, Williamson JM (1994) Closely spaced recurrent hippocampal seizures elicit two types of heightened epileptogenesis: a rapidly developing, transient kindling and a slowly developing, enduring kindling. Brain Res. 649:71–84.
Magloczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci. 28:334–340.
Marescaux C, Vergnes M, Kiesmann M, Depaulis A, Micheletti G, Warter JM (1987) Kindling of audiogenic seizures in Wistar rats: An EEG study. Exp. Neurol. 1:160–168.
Matsuda Y, Yano M, Kitayama M, Kogure S, Yamauchi T, (2003) Epileptogenesis induced by alternate-site kindling in bilateral hippocampi. Epilepsia 44, 292–298.
Morimoto K, Fahnestock M, Racine RJ. (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol, 73, pp. 1–60.
Musto AE, Samii MS, Hayes JF. (2009) Different phases of afterdischarge during rapid kindling procedure in mice. Epilepsy Res. 85:199–205
Niedermeyer E, Lopes da Silva F. (1993) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th ed. Baltimore: Williams & Wilkins.
Noachtar S. The role of EEG in epilepsy: a critical review. (2009) Epilepsy Behav.;15(1): 22–33.
Onat FY, Gulhan RA, Gurbanova AA, Ates, N, Luijtelaar G. (2007) The Effect of Generalized Absence Seizures on the Progression of Kindling in the Rat. Epilepsia, 48(Suppl. 5):150–156.
Quiroga RQ, Nadasdy Z, and Ben-Shaul Y. (2004). Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687.
Racine J (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroenceph. clin. Neurophysiol. 32:281–294.
Racine RJ, Burnham WM (1984) The kindling model. In P.A. Schwartzkroin and H.V. Wheal (Eds.). Electrophysiology of Epilepsy. 153–171.
Rijkers K, Aalbers M, Hoogland G, Winden L, Vles J, Steinbusch H, Majoie M (2010) Acute seizure-suppressing effect of vagus nerve stimulation in the amygdala kindled rat. Brain Res. 1319:155–163.
Sadleir LG. (2009) EEG features of absence seizures in idiopathic generalized epilepsy: impact of syndrome, age, and state. Epilepsia; 50(6): 1572–8.
Stacey WC, Litt B (2008) Technology insight: Neuroengineering and epilepsy—Designing devices for seizure control. Nat. Clin. Pract. Neurol. 4(4):190–201
Stern JM, Engel J. (2004) An Atlas of EEG Patterns. Philadelphia: Lippincott Williams & Wilkins.
Stephenson R, Caron AM, Cassel D, Kostela JC (2009) Automated analysis of sleep–wake state in rats J. Neurosci. Methods 184:263-274.
Subasi A. (2005a) Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Systems with Applications, 28(4):701–711.
Subasi A. (2005b) Epileptic seizure detection using dynamic wavelet network. Expert Systems with Applications, 29(2):343–355.
Srinivasan V. Eswaran C, Sriraam, N. (2007) “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Transactions on Information Technology in Biomedicine. 11(3):288–295.
Sucholeiki R (2010) Normal EEG waveforms. eMedicine: Neurology.
Taher TR, Salzberg M, Morris MJ, Rees S, O’Brien TJ (2005) Chronic low-dose corticosterone supplementation enhances acquired epileptogenesis in the rat amygdala kindling model of TLE. Neuropsychopharmacology 30:1610–1616.
Takekawa T, Isomura Y, Fukai T. (2010) Accurate spike sorting for multi-unit recordings. Eur. J. Neurosci. 31(2):263–272.
Terney D, Alving J, Skaarup CN, Wolf P, Beniczky S. (2008) The slow-wave component of the interictal epileptiform EEG discharges. Epilepsy Res.; 90(3):228–33.
Tsuchiya K, Kogure S (2011) Fast Fourier transformation analysis of kindling-induced afterdischarge in the rabbit hippocampus. Epilepsy Res. 95: 144–151.
Velasco F, Velasco M, Velasco AL, Menez D, Rocha L. (2001a). Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotact. Funct. Neurosurg. 77: 223–227.
Velasco M, Velasco F, Velasco AL (2001b) Centromedianthalamic and hippocampal electrical stimulation for the control of intractable epileptic seizures. J. Clin. Neurophysiol. 18:495–513.
Vonck K, Boon P, Achten E, De Reuck J, Caemaert J (2002) Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Ann. Neurol. 52: 556–565.
Wada JA, Sato M (1974a) Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats: correlative electrographic and behavioral features. Neurology 24: 565–574.
Wada JA, Sato M (1974b) Persistent seizure susceptibility and recurrent spontaneous seizures in kindled cats. Epilepsia. 15: 465–478.
Wadman WJ, Gutnick MJ (1993) Non-uniform propagation of epileptiform discharge in brain slices of rat neocortex. Neuroscience. 52(2): 255–262.
Webber WR, Litt B, Lesser RP, Fisher RS, Bankman I. (1993) Automatic EEG spike detection: what should the computer imitate? Electroenceph clin. Neurophysiol.87:364–373.
Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005) Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J. Clin. Neurophysiol. 22:343–356.
White AM, Williams PA, Ferraro DJ, Clark S, Kadam SD, Dudek FE, Staley KJ. (2006) Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J Neurosci Meth.152:255–266.
Wilson SB, Emerson R (2002) Spike detection: a review and comparison of algorithms. Clin. Neurophysiol. 113(12): 1873–1881.
Wong RK, Traub RD, Miles R (1986) Cellular basis of neuronal synchrony in epilepsy. Adv Neurol. 44:583–592.
Wyckhuys T, Smedt TD, Claeys P, Raedt R, Waterschoot L, Vonck K, Broecke CD, Mabilde C, Leybaert L, Wadman W, Boon P (2007) High frequency deep brain stimulation in the hippocampus modifies seizure characteristics in kindled rats. Epilepsia. 48(8): 1543–1550.
Wyckhuys T, Raedt R, Vonck K, Wadman W, Boon P (2010) Comparison of hippocampal Deep Brain Stimulation with high (130 Hz) and low frequency (5 Hz) on afterdischarges in kindled rats. Epilepsy Res. 88: 239–246.
Zhang Y, Xu G, Wang J, Liang L. (2010) “An automatic patient-specific seizure onset detection method in intracranial EEG based on incremental nonlinear dimensionality reduction,” Computers in Biology and Medicine, 40(11-12): 889–899.
Zhang W, Huguenard JR, Buckmaster PS. (2012) Increased Excitatory Synaptic Input to Granule Cells from Hilar and CA3 Regions in a Rat Model of Temporal Lobe Epilepsy. J. Neurosci. 32(4):1183–1196.