簡易檢索 / 詳目顯示

研究生: 張健暐
Chang, Chien-Wei
論文名稱: 動態資料環境下的資源利用最佳化探討
Exploring Optimal Resource Utilization in the Evolving Data Resources
指導教授: 莊坤達
Chuang, Kun-Ta
共同指導教授: 葉彌妍
Yeh, Mi-Yen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 多媒體系統與智慧型運算工程博士學位學程
Multimedia System and Intelligent Computing Ph.D. Degree Program
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 103
中文關鍵詞: 動態資源利用影響力持續性時空間分派醫療資源分配眾包資源分配
外文關鍵詞: Dynamic Resource Utilization, Influential Sustainability, Medical Resource Placement, Crowdsourcing Resource Allocation
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們探討了如何在動態環境中優化資源利用的三個面向,其中包含增進廣告影響的持續力,為了減少醫院負擔進行優化醫療資源配置,以及優化眾包資源配置策略。

    首先針對延續效益的議題,我們探討了一種新穎的病毒式行銷法,目標是維持網路中的影響力。我們從真實的案例中學習,例如用於ALS的「冰桶挑戰」,並在市場行銷推廣中發現「來得快去得也快」的現象。這樣的自然現象在先前的文獻中完全沒有探討過,但它會違反許多試圖獲得長久關注和支持的行銷策略的直覺。因此,我們特別關注「影響力可持續性」的問題,以達成對網路有長期且有效的影響。給定一組初始種子S和一個門檻值ρ,影響力可持續性的目標是最佳化S中的種子激活時間,以便最大化影響持續時間,其中的每次持續時間代表激活超過ρ個的非激活節點的數量。由於其NP困難性質而影響力可持續性問題變
    得更具有挑戰性。

    其次,受全球暖化的影響,蚊子所造成(或藉由蚊子傳播的疾病)的流行病變得更趨嚴重,例如登革熱和茲卡病毒。據報導所言,由於難以預料的疾病大爆發,疫情可能給醫院管理帶來許多挑戰。此外,在傳播疾病(例如登革熱(迄今為止尚未確定適當的治療))期間的不完全護理可能導致應該避免的死亡率上升。本文提出了一種優化醫療資源配置的新方式,以在都市圈疫情爆發期間減緩醫院的超收病患情況。在本文中,我們是首篇探討了兩個重要問題的論文,包括評估服務質量的策略和動態調度醫療資源的解決方案,以及疫情爆發的空間變化。正如我們在台南(2015)發生登革熱爆發的真實數據的實驗結果中所證實的結
    果,我們提出了我們的框架在醫療資源分配中部署動態資源配置策略的可能性。

    最後,研究人員和科學家近年來一直在使用眾包平台來收集訓練數據上的標記。此過程具有成本效益和可擴展性,但研究表明,由於工人偏見,工作差異和任務難度等原因,真實姓推論的質量不穩定。在這項工作中,我們提出了一個混合系統,匯集了訓練有素的領域專家隊伍和眾多眾包平台,為行業級分類引擎收集高質量的培訓數據。我們展示如何通過質量控制策略獲得高品質的標籤數據,這些策略可動態且實惠有效地利用領域專家和眾包的優勢。

    In this thesis, we discussed three significant aspects that need to be considered in the resource utilization of the evolving environment. There are mainly three portions in this thesis, including strengthening the duration of advertising impact, optimizing medical resource placement
    to reduce hospital burden and improving resource allocation strategies in crowdsourcing.

    First of all, for the topic of strengthens the sustainability, we study a novel paradigm of viral marketing with the goal to sustain the influential effectiveness in the network. We study from real cases such as the Ice Bucket Challenges for the ALS awareness, and figure out the ”easy come and easy go” phenomenon in the marketing promotion. Such a natural property is
    fully unexplored in the literature, but it will violate the need of many marketing applications which attempt to receive the perpetual attention and support. We thus highlight the problem of Influential Sustainability, to pursue the long-term and effective influence on the network. Given the set of initial seeds S and a threshold ρ, the goal of Influential Sustainability is to best decide the timing to activate each seed in S so as to maximize the number of iterations in which each iteration will activate the number of inactive nodes more than ρ. The Influential Sustainability problem is challenging due to its #P-hard nature.

    Secondly, with the effects of global warming, some epidemic diseases via mosquito (e.g. mosquito-borne diseases) become more serious, such as dengue fever and zika virus. It is reported that the epidemic disease may cause many challenges to the hospital management due to the unexpected burst with uncertain reasons. Furthermore, the imperfect cares during the propagation of epidemic diseases, such as dengue fever (so far the appropriate treatment is not well established), may lead to the increasing mortality rate which should be avoided. In this thesis, a novel paradigm for optimizing the placement of medical resource is proposed in pursuit
    of reducing the overloading cases in hospitals during the epidemic outbreak in the urban area. In this thesis, we are the first thesis to explore two important issues, including the strategy to evaluate the service quality and the solution to dynamically dispatch the medical resource, along with the spatial variation of the epidemic outbreak. As validated in our experimental results in real data of dengue outbreak happening in Tainan (2015), we present the feasibility of our framework to deploy a dynamic placement strategy for medical resource assignment.

    Lastly, researchers and scientists have been using crowdsourcing platforms to collect labeled training data in recent years. The process is cost-effective and scalable, but research has shown that the quality of truth inference is unstable due to worker bias, work variance, and task difficulty. In this work, we present a hybrid system that brings together a well-trained troop of domain experts and the multitudes of a crowdsourcing platform to collect high-quality training data for industry-level classification engines. We show how to acquire high quality labeled data through quality control strategies that dynamically and cost-effectively leverage the strengths of both domain experts and crowdsourcing.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Resource Utilization for Influential Sustainability in Social Media . . . . 2 1.2.2 Resource Utilization for Easing the Hospital Congestion in Public Health Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Resource Utilization in Crowdsourcing . . . . . . . . . . . . . . . . . . . 5 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Information Sustainability on Social Networks . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Influence Sustainability on Static Networks . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Greedy Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 19 vi 2.3.3 IS_Break Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.4 IS_UpperBound Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.5 IS_Last Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Dynamic Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 Observation on Algorithm Scalability . . . . . . . . . . . . . . . . . . . . 31 2.5.2 Observation on Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.3 Observation on Dynamic Sustainability Algorithm . . . . . . . . . . . . . 37 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Spatiotemporal Resource Placement for Easing the Hospital Congestion . . . . . . . . 42 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Problems and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.2 Objective and Allocation Algorithms . . . . . . . . . . . . . . . . . . . . 49 3.4 Approximate Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.1 Problem Definition and Challenges . . . . . . . . . . . . . . . . . . . . . 56 3.4.2 Greedy Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5.1 Data Description and Experimental Setup . . . . . . . . . . . . . . . . . 58 3.5.2 Observation on Algorithm Scalability . . . . . . . . . . . . . . . . . . . . 62 vii 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 Sequential Resource Allocation for Crowdsourcing . . . . . . . . . . . . . . . . . . . . 67 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 The MAMO Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3 Macro Assignment (MA) Strategies . . . . . . . . . . . . . . . . . . . . . 78 4.4 Micro Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.1 Greedy Algorithmbased on RoI (Greedy-R) . . . . . . . . . . . . . . . . 80 4.4.2 Greedy Algorithmbased on Pre-confidence and RoI (Greedy-PR) . . . . 81 4.4.3 Dynamic Programming (DP) . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.1 Data Description and Experimental Setup . . . . . . . . . . . . . . . . . 82 4.5.2 Comparison between Different Scenarios . . . . . . . . . . . . . . . . . . 84 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    [1] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for prevalent viral
    marketing in large-scale social networks,” in Proceedings of the 16th ACM SIGKDD International
    Conference on Knowledge Discovery and Data Mining. New York, NY, USA:
    ACM, 2010, pp. 1029–1038.
    [2] D. Kempe, J. Kleinberg, and ´E. Tardos, “Maximizing the spread of influence through a
    social network,” in Proceedings of the Ninth ACM SIGKDD International Conference on
    Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2003, pp. 137–146.
    [3] K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence maximization in
    social networks.” in Proceedings of the 2012 IEEE 12th International Conference on Data
    Mining. Washington, DC, USA: IEEE Computer Society, 2012, pp. 918–923.
    [4] A. Goyal, W. Lu, and L. V. S. Lakshmanan, “Simpath: An efficient algorithm for influence
    maximization under the linear threshold model,” in Proceedings of the 2011 IEEE
    11th International Conference on Data Mining. Washington, DC, USA: IEEE Computer
    Society, 2011, pp. 211–220.
    [5] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in social networks under
    the linear threshold model,” in Proceedings of the 2010 IEEE International Conference
    on Data Mining. Washington, DC, USA: IEEE Computer Society, 2010, pp. 88–97.
    [6] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance, “Costeffective
    outbreak detection in networks,” in Proceedings of the 13th ACM SIGKDD International
    Conference on Knowledge Discovery and Data Mining. New York, NY, USA:
    ACM, 2007, pp. 420–429.
    [7] M. Kimura, K. Saito, and R. Nakano, “Extracting influential nodes for information diffusion
    on a social network,” in Proc. of AAAI, 2007.
    [8] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: near-optimal time complexity
    meets practical efficiency,” in Proc. of ACM SIGMOD, 2014.
    96
    [9] B. Liu, G. Cong, D. Xu, and Y. Zeng, “Time constrained influence maximization in social
    networks,” in 2012 IEEE 12th International Conference on Data Mining, Dec 2012, pp.
    439–448.
    [10] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “A data-based approach to social influence
    maximization,” Proceedings of the VLDB Endowment, vol. 5, no. 1, pp. 73–84, Sep. 2011.
    [11] J. Kim, S.-K. Kim, and H. Yu, “Scalable and parallelizable processing of influence maximization
    for large-scale social networks,” in 29th IEEE International Conference on Data
    Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, 2013.
    [12] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy algorithm for mining
    top-k influential nodes in mobile social networks,” in Proceedings of the 16th ACM
    SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010.
    [13] P. Domingos and M. Richardson, “Mining the network value of customers,” in Proceedings
    of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
    Mining. New York, NY, USA: ACM, 2001, pp. 57–66.
    [14] M. Richardson and P. Domingos, “Mining knowledge-sharing sites for viral marketing,” in
    Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
    and Data Mining. New York, NY, USA: ACM, 2002, pp. 61–70.
    [15] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in social networks,” in
    Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
    and Data Mining. New York, NY, USA: ACM, 2009, pp. 199–208.
    [16] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: optimizing the greedy algorithm
    for influence maximization in social networks,” in Proceedings of the 20th International
    Conference Companion on World Wide Web. New York, NY, USA: ACM, 2011, pp.
    47–48.
    [17] Q. Jiang, G. Song, G. Cong, Y. Wang, W. Si, and K. Xie, “Simulated annealing based
    influence maximization in social networks,” in Proceedings of the Twenty-Fifth AAAI Conference
    on Artificial Intelligence. AAAI Press, 2011, pp. 127–132.
    97
    [18] M. Kimura and K. Saito, “Tractable models for information diffusion in social networks,”
    in Proceedings of the 10th European Conference on Principle and Practice of Knowledge
    Discovery in Databases. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 259–271.
    [19] R. Narayanam and Y. Narahari, “A shapley value-based approach to discover influential
    nodes in social networks,” IEEE Transactions on Automation Science and Engineering,
    vol. 8, no. 1, pp. 130–147, Jan 2011.
    [20] W. Chen, W. Lu, and N. Zhang, “Time-critical influence maximization in social networks
    with time-delayed diffusion process,” in Proceedings of the Twenty-Sixth AAAI Conference
    on Artificial Intelligence. AAAI Press, 2012, pp. 592–598.
    [21] M. Gomez-Rodriguez and B. Sch¨olkopf, “Influence maximization in continuous time diffusion
    networks,” in Proceedings of the 29th International Conference on Machine Learning,
    2012.
    [22] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha, “Scalable influence estimation in
    continuous-time diffusion networks,” in Neural Information Processing Systems, 2012.
    [23] C. Chang, P. Yang, M. Lyu, and K. Chuang, “Influential sustainability on social networks,”
    in 2015 IEEE International Conference on Data Mining, 2015, pp. 31–40.
    [24] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing: Concepts,
    methodologies, and applications,” ACM Trans. Intell. Syst. Technol., vol. 5, no. 3, pp.
    38:1–38:55, Sep. 2014. [Online]. Available: http://doi.acm.org/10.1145/2629592
    [25] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, Berlin, Germany,
    2004.
    [26] D. L. Huff, “A probabilistic analysis of shopping center trade areas,” Land Economics,
    vol. 39, no. 1, pp. 81–90, 1963. [Online]. Available: http://EconPapers.repec.org/RePEc:
    uwp:landec:v:39:y:1963:i:1:p:81-90
    [27] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian
    processes: Theory, efficient algorithms and empirical studies,” J. Mach. Learn. Res.,
    vol. 9, pp. 235–284, Jun. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=
    1390681.1390689
    98
    [28] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance,
    “Cost-effective outbreak detection in networks,” in Proceedings of the 13th ACM
    SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
    KDD ’07. New York, NY, USA: ACM, 2007, pp. 420–429. [Online]. Available:
    http://doi.acm.org/10.1145/1281192.1281239
    [29] Y. C. Wang, C. C. Hu, and Y. C. Tseng, “Efficient placement and dispatch of sensors in
    a wireless sensor network,” IEEE Transactions on Mobile Computing, vol. 7, no. 2, pp.
    262–274, Feb 2008.
    [30] M. Mahdian, O. Schrijvers, and S. Vassilvitskii, “Algorithmic cartography: Placing
    points of interest and ads on maps,” in Proceedings of the 21th ACM SIGKDD
    International Conference on Knowledge Discovery and Data Mining, ser. KDD
    ’15. New York, NY, USA: ACM, 2015, pp. 755–764. [Online]. Available: http:
    //doi.acm.org/10.1145/2783258.2783375
    [31] S. Brusca, R. Lanzafame, and M. Messina, “Wind turbine placement optimization by
    means of the monte carlo simulation method,” Modelling and Simulation in Engineering,
    2014.
    [32] A. Agarwal, E. Hazan, S. Kale, and R. E. Schapire, “Algorithms for portfolio management
    based on the newton method,” in Proceedings of the 23rd International Conference on
    Machine Learning, ser. ICML ’06, 2006, pp. 9–16.
    [33] N. Johnson and A. Banerjee, “Structured hedging for resource allocations with leverage,” in
    Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
    and Data Mining, ser. KDD ’15, 2015, pp. 477–486.
    [34] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, “Wherenext: A location
    predictor on trajectory pattern mining,” in Proceedings of the 15th ACM SIGKDD
    International Conference on Knowledge Discovery and Data Mining, ser. KDD
    ’09. New York, NY, USA: ACM, 2009, pp. 637–646. [Online]. Available: http:
    //doi.acm.org/10.1145/1557019.1557091
    [35] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S. Tseng, “Semantic trajectory
    mining for location prediction,” in Proceedings of the 19th ACM SIGSPATIAL
    99
    International Conference on Advances in Geographic Information Systems, ser.
    GIS ’11. New York, NY, USA: ACM, 2011, pp. 34–43. [Online]. Available:
    http://doi.acm.org/10.1145/2093973.2093980
    [36] V. Belik, T. Geisel, and D. Brockmann, “Natural human mobility patterns and spatial
    spread of infectious diseases,” Phys. Rev. X, vol. 1, p. 011001, Aug 2011. [Online].
    Available: http://link.aps.org/doi/10.1103/PhysRevX.1.011001
    [37] S. Riley, “Large-scale spatial-transmission models of infectious disease,” Science, vol. 316,
    no. 5829, pp. 1298–1301, 2007.
    [38] G. G. T. Edward P. C. Kao, “Bed allocation in a public health care delivery system,”
    Management Science, vol. 27, no. 5, pp. 507–520, 1981.
    [39] X. Li, P. Beullens, D. Jones, and M. Tamiz, Multiobjective Programming and Goal Programming:
    Theoretical Results and Practical Applications. Springer Berlin Heidelberg,
    2009, pp. 253–265.
    [40] WHO, Dengue guidelines, for diagnosis, treatment, prevention and control. World Health
    Organization, 2009, ch. 2.
    [41] J. K. Cochran and A. Bharti, “Stochastic bed balancing of an obstetrics hospital,” Health
    Care Management Science, vol. 9, no. 1, pp. 31–45, 2006.
    [42] K. Dudzi´nski and S. Walukiewicz, “Exact methods for the knapsack problem and its
    generalizations,” European Journal of Operational Research, vol. 28, no. 1, pp. 3 – 21,
    1987.
    [43] J. H. Holland, Hidden Order: How Adaptation Builds Complexity. Redwood City, CA,
    USA: Addison Wesley Longman Publishing Co., Inc., 1995.
    [44] Amazon, “Amazon mechanical turk (AMT).” https://www.mturk.com/.
    [45] D. R. Karger, S. Oh, and D. Shah, “Budget-optimal task allocation for reliable crowdsourcing
    systems,” Operations Research, 2014.
    [46] P. Welinder, S. Branson, S. Belongie, and P. Perona, “The multidimensional wisdom of
    crowds,” in Advances in Neural Information Processing Systems 23, 2010.
    100
    [47] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy,
    “Learning from crowds,” JMLR, 2010.
    [48] X. Chen, Q. Lin, and D. Zhou, “Optimistic knowledge gradient policy for optimal budget
    allocation in crowdsourcing,” in Proceedings of the 30th International Conference on
    Machine Learning. Atlanta, Georgia, USA: PMLR, 2013.
    [49] C. Ho, S. Jabbari, and J. W. Vaughan, “Adaptive task assignment for crowdsourced classification,”
    in Proceedings of the 30th International Conference on Machine Learning, 2013.
    [50] M. Fang, J. Yin, and D. Tao, “Active learning for crowdsourcing using knowledge transfer,”
    in AAAI, 2014.
    [51] C. Ho and J. W. Vaughan, “Online task assignment in crowdsourcing markets,” in AAAI,
    2012.
    [52] Y. Yan, R. Rosales, G. Fung, and J. G. Dy, “Active learning from crowds,” in Proceedings
    of the 28th International Conference on Machine Learning, 2011.
    [53] J. Zhong, K. Tang, and Z. Zhou, “Active learning from crowds with unsure option,” in
    Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
    2015.
    [54] J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo, “Whose vote should
    count more: Optimal integration of labels from labelers of unknown expertise,” in Advances
    in Neural Information Processing Systems 22, 2009.
    [55] X. Zhang, G. Li, and J. Feng, “Crowdsourced top-k algorithms: An experimental evaluation,”
    PVLDB, 2016.
    [56] Y. Zheng, G. Li, Y. Li, C. Shan, and R. Cheng, “Truth inference in crowdsourcing: Is the
    problem solved?” PVLDB, 2017.
    [57] D. R. Karger, S. Oh, and D. Shah, “Iterative learning for reliable crowdsourcing systems,”
    in Advances in Neural Information Processing Systems 24, 2011.
    [58] B. Mozafari, P. Sarkar, M. Franklin, M. Jordan, and S. Madden, “Scaling up crowdsourcing
    to very large datasets: A case for active learning,” PVLDB, 2014.
    101
    [59] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of observer error-rates
    using the em algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
    1979.
    [60] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon mechanical
    turk,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
    Discovery and Data Mining, 2010.
    [61] M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi, “Community-based bayesian
    aggregation models for crowdsourcing,” in Proceedings of the 23st World Wide Web Conference
    2014, 2014.
    [62] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez, L. Bogoni, and
    L. Moy, “Supervised learning from multiple experts: Whom to trust when everyone lies a
    bit,” in Proceedings of the 26th International Conference on Machine Learning, 2009.
    [63] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and J. Han, “A confidenceaware
    approach for truth discovery on long-tail data,” PVLDB, 2014.
    [64] M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Evaluating the crowd with confidence,”
    in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
    Discovery and Data Mining, 2013.
    [65] C. C. Cao, J. She, Y. Tong, and L. Chen, “Whom to ask? jury selection for decision
    making tasks on micro-blog services,” PVLDB, vol. 5, no. 11, pp. 1495–1506, 2012.
    [66] L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. W. Duin, “Limits on the majority
    vote accuracy in classifier fusion,” Pattern Anal. Appl., 2003.
    [67] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Inf. Comput.,
    1994.
    [68] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang, “Cdas: A crowdsourcing data
    analytics system,” PVLDB, 2012.
    [69] Y. Zheng, J.Wang, G. Li, R. Cheng, and J. Feng, “Qasca: A quality-aware task assignment
    system for crowdsourcing applications,” in SIGMOD, 2015.
    102
    [70] J. Weglarz, Project Scheduling: Recent Models, Algorithms and Applications, ser.
    International Series in Operations Research & Management Science. Springer US, 1998.
    [Online]. Available: https://books.google.com.tw/books?id=ven6r5KuQAMC
    [71] Y. Liu and M. Liu, “An online learning approach to improving the quality of crowdsourcing,”
    IEEE/ACM Transactions on Networking, 2017.
    [72] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, and L. Moy,
    “Learning from crowds,” J. Mach. Learn. Res., 2010.
    [73] V. Raykar and P. Agrawal, “Sequential crowdsourced labeling as an epsilon-greedy exploration
    in a Markov Decision Process,” in Proceedings of the Seventeenth International
    Conference on Artificial Intelligence and Statistics, 2014.
    [74] Q. Li, F. Ma, J. Gao, L. Su, and C. J. Quinn, “Crowdsourcing high quality labels with a
    tight budget,” in WSDM, 2016.
    [75] W. Wang, X.-Y. Guo, S.-Y. Li, Y. Jiang, and Z.-H. Zhou, “Obtaining high-quality label
    by distinguishing between easy and hard items in crowdsourcing,” in Proceedings of the
    Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017.
    [76] D. group of Tsinghua university, “Crowdsourcing datasets.” http://dbgroup.cs.tsinghua.
    edu.cn/ligl/crowddata/.

    無法下載圖示 校內:2020-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE