簡易檢索 / 詳目顯示

研究生: 黃淑雯
Huang, Shu-Wen
論文名稱: 本土微藻產糖能力鑑定與最適化並應用藻糖進行生質酒精之生產
Characterization and optimal production of carbohydrates from indigenous microalgae for bioethanol production
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 129
中文關鍵詞: 微藻碳水化合物光生物反應器酵素水解酸水解生質酒精
外文關鍵詞: Microalgae, carbohydrate, photobioreactor, enzymatic hydrolysis, acidic hydrolysis, bioethanol
相關次數: 點閱:231下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,以微藻作為生質能料源備受重視,因微藻生長快速且可經由光合作用固定二氧化碳並轉化生成生物量,而且某些微藻(如綠藻等)可將碳水化合物以澱粉與纖維素的型態大量累積儲存於藻體,因此被視為具有潛力作為生質酒精醱酵生產的料源之一。
    本研究首先將台灣中南部水域所篩選出之四株本土微藻Chlorella vulgaris ESP-6、C. vulgaris FSP-E、C. vulgaris BS-C與Chlamydomonas orbicularis Tai-04進行微藻產糖之鑑定。結果顯示,在相同培養條件下C. vulgaris FSP-E可獲得最高的藻體生物量濃度及生產速率,分別為4.3 g/L 和0.18 g/L/d。這四株微藻中又以C. vulgaris FSP-E的碳水化合物含量及葡萄糖含量最高,分別約佔藻體乾重54.1% 和50.2%。此外,為了有效提升微藻生物量及碳水化合物產率,本研究探討不同氮源、不同光照強度、不同植藻量、不同氮源濃度、不同氮源缺乏天數對微藻體生物量及碳水化合物產率的影響。結果顯示,在1升的光生物反應器操作下,當光照強度為440 micromol m-2s-1、植藻量為0.14 g/L、氮源(尿素)濃度為0.56 g/L、氮源缺乏時間3天時,有最佳碳水化合物產率。最高碳水化合物與生物量生產速率分別為0.687 g/L/d 和1.363 g/L/d,其中碳水化合物含量及葡萄糖含量分別約佔藻體乾重的50.4±0.4%和46.9±0.4%。而在5升反應器以相同培養條件下氮源缺乏4天後,其最高碳水化合物與生物量生產速率分別為0.378 g/L/d 和0.792 g/L/d。
    本研究接著將所獲得的藻體生物量進行水解糖化及酒精醱酵測試。在藻體酵素水解糖化之測試方面,當藻體濃度為20 g/L、藻體超音波振盪預處理為10分鐘、水解酵素用量為內切型纖維素分解酵素0.65 U/mL、beta-葡萄糖苷酶0.30 U/mL、澱粉酶0.75 U/mL時,有最佳水解糖化效能,其最佳葡萄糖產率為90.4%。接著,以兩階段水解糖化醱酵程序(SHF)在此酵素水解條件下進行酒精生產之探討。結果發現,以20 g/L藻體為碳源時,在SHF系統下可達酒精產量及酒精理論產率分別為3.55 g/L及80.1%。在硫酸水解糖化之測試方面,當藻體濃度為60 g/L、1%硫酸濃度下,有最佳水解效能,最佳葡萄糖產率為93.6%。並以兩階段水解糖化醱酵程序(SHF)在此硫酸水解條件下進行酒精生產之探討。結果發現,以藻體(60 g/L)為碳源時,在SHF系統下可達酒精產量及酒精理論產率分別為11.7 g/L及87.6%。由上述結果顯示,本研究利用各種策略確實能有效提升微藻生物量及碳水化合物產率,並可以有效地利用兩階段水解醱酵策略轉化藻體醣類以產生質酒精。

    Microalgae are considered as one of the most promising renewable feedstock for bioethanol production due to the advantages of fast growing, efficient carbon dioxide fixation, and potentially containing high carbohydrate contents (mainly in the form of cellulose and starch). Therefore, this study aimed to evaluate the potential of carbohydrate production from microalgae for bioethanol production.
    First, four indigenous microalgal strains, namely Chlorella vulgaris ESP-6, C. vulgaris FSP-E, C. vulgaris BS-C, and Chlamydomonas orbicularis Tai-04, were investigated to identify their growth rates and carbohydrate content. Among the four strains examined, C. vulgaris FSP-E showed the highest biomass concentration and carbohydrate productivity, which was 4.3 g/L and 0.18 g/L/d, respectively. C. vulgaris FSP-E also showed the highest carbohydrate and glucose content, which was 54.1% and 50.2%, respectively. Therefore, the FSP-E strain was selected as the target microalga strain in this work.
    The biomass and carbohydrate productivity of C. vulgaris FSP-E were further improved by adjusting the light intensity, inoculum size, nitrogen type and concentration, and nitrogen starvation period. The optimal conditions for carbohydrate productivity occurred when the microalga culture was controlled at light intensity, 440 micromol m-2s-1; inoculum size, 0.14 g/L; nitrogen source, urea; urea concentration, 0.56 g/L; nitrogen starvation period, 3 days in a 1L glass-vessel type photobioreactor (PBR). The carbohydrate productivity, biomass productivity, carbohydrate content, and glucose content were 0.687 g/L/d, 1.363 g/L/d, 50.4±0.4%, and 46.9±0.4%, respectively. When this cultivation condition was applied in 5L PBR, the carbohydrate and biomass productivity was lower at 0.378 g/L/d and 0.792 g/L/d, respectively.
    Enzymatic hydrolysis of the microalgae-based carbohydrate was the most efficient when 20 g/L of microalgal biomass was first pretreated by 10 min sonication and hydrolyzed by a cocktail enzyme mixture consisting of endoglucanase: 0.65 U/mL, beta-glucosidase: 0.30 U/mL, amylase: 0.75 U/mL. The highest glucose yield obtained from the foregoing procedures was 90.4%. The enzymatic hydrolysate of C. vulgaris FSP-E (glucose content =7.58 g/L) was used for ethanol production via SHF process, producing 3.55 g/L ethanol, which represents 80.1% of the theoretically maximum yield. As for acidic hydrolysis of the microalga biomass, the highest glucose yield (93.6%) was achieved when microalgal biomass concentration was 60 g/L and sulfuric acid concentration was 1%. The acidically hydrolyzed C. vulgaris FSP-E biomass was also used for ethanol production by SHF process, giving rise to an ethanol concentration of 11.7 g/L and a yield of 87.6% of the theoretical yield. These results indicate the feasibility of producing carbohydrate from microalgal biomass for fermentative bioethanol production.

    Contents 摘要 i Abstract iii Acknowledgement v Contents vi List of Figures xi List of Tables xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and purpose 4 Chapter 2 Literature review 7 2.1 Introduction to bioethanol 7 2.1.1 Bioethanol as a biofuel 7 2.1.2 Biomass feedstock for bioethanol production 8 2.2 Microalgae and microalgal carbohydrates 15 2.2.1 Green algae 19 2.2.2 Carbohydrate composition of green algae 22 2.2.3 Carbohydrate metabolism of green algae 24 2.2.4 Effect of environmental factors on carbohydrate production in microalgae 29 2.3 Conversion of carbohydrate of microalgal biomass to biofuels 31 2.3.1 Conversion of microalgal biomass to bioethanol 33 2.3.2 Hydrolysis processes 34 2.3.3 Fermentation processes 39 Chapter 3 Materials and methods 41 3.1 Chemicals and materials 41 3.2 Equipment 44 3.3 Analytical methods 46 3.3.1 Determination of microalgal biomass concentration and growth kinetic parameters 46 3.3.2 Determination of nitrate concentration 47 3.3.3 Determination of ammonium concentration 47 3.3.4 Determination of urea concentration 47 3.3.5 Determination of carbohydrates in the microalgal biomass 48 3.3.6 Determination of starch content in the microalgal biomass 49 3.3.7 Determination of protein content in the microalgal biomass 49 3.3.8 Determination of lipid content in the microalgal biomass 49 3.3.9 Measurement of light intensity 50 3.3.10 Determination of reducing sugar concentration 50 3.3.11 Determination of liquid product by high performance liquid chromatography (HPLC) 51 3.3.12 Determination of endoglucanase activity 51 3.3.13 Determination of exoglucanase activity 52 3.3.14 Determination of -glucosidase activity 52 3.3.15 Determination of amylases activity 52 3.4 Experimental methods 53 3.4.1 Microalgae and their culture condition 53 3.4.2 Enzyme-producing bacterium and its culture conditions 54 3.4.3 Influence of pre-treatment on microalgae by sonication for enzymatic hydrolysis 55 3.4.4 Effect of microalgal biomass concentration on enzymatic hydrolysis efficiency 56 3.4.5 Effect of chemical methods on hydrolysis efficiency 56 3.4.6 Ethanol-producing bacteria and culture condition 56 3.4.7 Separate hydrolysis and fermentation (SHF) operation for bioethanol production using microalgal biomass as feedstock 57 Chapter 4 Results and discussion 59 4.1 Identification of microalgae 59 4.2 Cultivation of four microalgal strains 62 4.3 Effect of nitrogen source type and concentration on biomass production and composition of Chlorella vulgaris FSP-E 69 4.4 Effect of cultivation time under nitrogen starvation on carbohydrate production and composition of Chlorella vulgaris FSP-E 72 4.5 Effect of light intensity on cell growth and biomass productivity of Chlorella vulgaris FSP-E 77 4.6 Effect of inoculum size on cell growth and biomass productivity of Chlorella vulgaris FSP-E 80 4.7 Effect of combination of inoculum size and light intensity on the growth of Chlorella vulgaris FSP-E 82 4.8 Effect of nitrogen concentration and cultivation time under nitrogen starvation on biomass and carbohydrate productivity of Chlorella vulgaris FSP-E 90 4.9 Scale up of biomass and carbohydrate production of Chlorella vulgaris FSP-E 96 4.10 Hydrolysis of microalgal biomass and ethanol fermentation 98 4.10.1 Influence of pretreatment on microalgae by sonication for enzymatic hydrolysis 98 4.10.2 Effect of enzyme composition on microalgae hydrolysis efficiency 101 4.10.3 Effect of microalgal biomass concentration on enzymatic hydrolysis efficiency 103 4.10.4 Enzymatic hydrolysis of C. vulgaris FSP-E biomass for ethanol production by SHF process 105 4.10.5 Effect of chemical method on hydrolysis efficiency 107 4.10.6 Effect of microalgal biomass concentration on acidic hydrolysis efficiency 110 4.10.7 Acidic hydrolysis of C. vulgaris FSP-E biomass for ethanol 111 production via SHF process 111 Chapter 5 Conclusions 114 5.1 Conclusions 114 5.2 Future work 115 References 116 Appendix 127 Appendix curriculum vitae 128

    D.S.D.G. Feasibility study on an effective and sustainable bio-ethanol production programby least developed countries as alternative to cane sugar export. The Hague, The Netherlands: Ministry of Agriculture, Nature and Food Quality (LNV). 2005

    Aro, E.M., Virgin, I. and Andersson, B. Photoinhibition of Photosystem-2 - Inactivation, Protein Damage and Turnover. Biochimica Et Biophysica Acta 1143 (2), 113-134. 1993

    Balat, H. Prospects of biofuels for a sustainable energy future: A critical assessment. Energy Education Science and Technology Part a-Energy Science and Research 24 (2), 85-111. 2010

    Balat, M. Global bio-fuel processing and production trends. Energy Exploration and Exploitation 25 (3), 195-218. 2007

    Balat, M. and Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy 86 (11), 2273-2282. 2009

    Balat, M., Balat, H. and Oz, C. Progress in bioethanol processing. Progress in Energy and Combustion Science 34 (5), 551-573. 2008

    Becker, E.W. Microalgae: Biotechnology and Microbiology. the Press Syndicate of the University of Cambridge. 1994

    Behrenfeld, M.J., Halsey, K.H. and Milligan, A.J. Evolved physiological responses of phytoplankton to their integrated growth environment. Philosophical Transactions of the Royal Society B-Biological Sciences 363 (1504), 2687-2703. 2008

    Bouterfas, R., Belkoura, M. and Dauta, A. The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake. Asociaci ´on Espa˜ nola de Limnolog´ ıa, Madrid. Spain. 25 (3), 647-656 2006
    Brennan, L. and Owende, P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews 14 (2), 557-577. 2010

    Brown, L.R. Beyond the oil peak. In: Brown LR, editor. Plan B 2.0 rescuing a planet under stress and a civilization in trouble. New York: W.W. Norton & Co., 21-40. 2006

    Brown, M.R., McCausland, M.A. and Kowalski, K. The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat. Aquaculture 165 (3-4), 281-293. 1998

    Butler, W.R., Calaman, J.J. and Beam, S.W. Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle. Journal of Animal Science 74 (4), 858-865. 1996

    Champagne, P. Feasibility of producing bio-ethanol from waste residues: A Canadian perspective Feasibility of producing bio-ethanol from waste residues in Canada. Resources Conservation and Recycling 50 (3), 211-230. 2007

    Cheng, C.-L., Chang, J.-S. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresource Technology 2011

    Cheng, W.C., Chen, H.H., Hsueh, H.T. and Chu, H. CO2-fixation by Marine Microalgae and its Potential Bioenergy Composition at Conditions of Nitrogen Deficiency. National Cheng Kung University Department of Environmental Engineering, Taiwan. 2008

    Cheryl. Algae becoming the new biofuel of choice. 2008

    Chisti, Y. Biodiesel from microalgae. Biotechnology Advances 25 (3), 294-306. 2007

    Choi, S.P., Nguyen, M.T. and Sim, S.J. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology 101 (14), 5330-5336. 2010

    Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A. and Harrison, P.J. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. Journal of Applied Phycology 11 (2), 179-184. 1999

    D'Souza, F.M.L. and Kelly, G.J. Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture 181 (3-4), 311-329. 2000

    Demirbas, A. Social, economic, environmental and policy aspects of biofuels. Energy Education Science and Technology Part B 2, 75-109. 2010

    Demirbas, M.F., Balat, M. and Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management 50 (7), 1746-1760. 2009

    Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M. and Posewitz, M.C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology 19 (3), 235-240. 2008

    Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A. and Teixeira, J.A. Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy. 2011

    Eshaq, F.S., Ali, M.N. and Mohd, M.K. Spirogyra biomass a renewable source for biofuel (bioethanol) Production. Engineering Science and Technology 2 (12), 7045-7054. 2010

    Fidalgo, J.P., Cid, A., Torres, E., Sukenik, A. and Herrero, C. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166 (1-2), 105-116. 1998

    Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S. and Bogel-Lukasik, R. Hemicelluloses for fuel ethanol: A review. Bioresource Technology 101 (13), 4775-4800. 2010

    Goldemberg, J., Coelho, S.T. and Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 36 (6), 2086-2097. 2008

    Gouveia, L. Microalgae as a Feedstock for Biofuels. SpringerBriefs in Microbiology. 2011

    Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. and Gorwa-Grauslund, M.F. Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology 74 (5), 937-953. 2007

    Harun, R. and Danquah, M.K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry 46, 304–309. 2011

    Harun, R., Danquah, M.K. and Forde, G.M. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology 85 (2), 199-203. 2010

    Harun, R., Jason, W.S.Y., Danquah, M.K. and Cherrington, T. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy. 2010

    Hills, F.J., Johnson, S.S., Geng, S., Abshahi, A. and Peterson, G.R. Comparison of four crops for alcohol yield. California agriculture 37 (17-9). 1983

    Hirano, A., Ueda, R., Hirayama, S. and Ogushi, Y. CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22 (2-3), 137-142. 1997

    Ho, S.H., Chen, C.Y., Yeh, K.L., Chen, W.M., Lin, C.Y. and Chang, J.S. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochemical Engineering Journal 53 (1), 57-62. 2010

    IKE, A., Toda, N., Hirata, K. and Miyamoto, K. Hydrogen Photoproduction from CO2 Fixing Microalgal Biomass: Application of Lactic Acid Fermentation by Lactobacillus amylovorus. Fermentation and Bioengineering 84 (5), 428-433. 1997
    Illman, A.M., Scragg, A.H. and Shales, S.W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 27 (8), 631-635. 2000

    Johnson, F.X. and Rosillo-Calle, F. Biomass, livelihoods and international trade. Stockholm Environment Institute. 2007

    Jorgensen, H., Kutter, J.P. and Olsson, L. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Analytical Biochemistry 317 (1), 85-93. 2003

    Kim, M.S., Baek, J.S., Yun, Y.S., Sim, S.J., Park, S. and Kim, S.C. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. International Journal of Hydrogen Energy 31 (6), 812-816. 2006
    Kimura, S. and Kondo, T. Recent progress in cellulose biosynthesis. Journal of Plant Research 115 (1120), 297-302. 2002

    Kuhad, R.C., Singh, A. and Eriksson, K.E. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Advance Biochemical Engineering Biotechnology 57, 45-125. 1997

    Lee, R.E. Phycology. Cambridge University Press, Cambridge ; New York. 1989

    Lehninger, A.L., Nelson, D.L. and Cox, M.M. Lehninger principles of biochemistry. W.H. Freeman, New York. 2005

    Li, Y., Horsman, M., Wu, N., Lan, C.Q. and Dubois-Calero, N. Biofuels from microalgae. Biotechnology Progress 24 (4), 815-820. 2008
    Liang, Y.N., Sarkany, N. and Cui, Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 31 (7), 1043-1049. 2009

    Lin, Y. and Tanaka, S. Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 69 (6), 627-642. 2006

    Lynd, L.R. Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment 21, 403-465. 1996

    Lynd, L.R., Weimer, P.J., van Zyl, W.H. and Pretorius, I.S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66 (3), 506-577, table of contents. 2002

    Marsalkova, B., Sirmerova, M., Kurec, M., Branyik, T., Branyikova, I., Melzoch, K. and Zachleder, V. Microalgae Chlorella sp. as an Alternative Source of Fermentable Sugars. Chemical Engineering Transactions 21, 1279-1284. 2010

    Martone, P.T., Estevez, J.M., Lu, F.C., Ruel, K., Denny, M.W., Somerville, C. and Ralph, J. Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture. Current Biology 19 (2), 169-175. 2009

    McCleary, B.V., Gibson, T.S. and Mugford, D.C. Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: Collaborative study. Journal of Aoac International 80 (3), 571-579. 1997

    Meier, R.L., Daniels, F. and Duffie, J.A. Biological cycles in the transformation of solar energy into useful fuels. Solar energy research, 83-179. 1955

    Melis, A. and Happe, T. Hydrogen production. Green algae as a source of energy. Plant Physiology 127 (3), 740-748. 2001

    Meseck, S.L., Alix, J.H. and Wikfors, G.H. Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture 246 (1-4), 393-404. 2005

    Metting, F.B. Biodiversity and application of microalgae. Journal of Industrial Microbiology and Biotechnology 17 (5-6), 477-489. 1996

    Mohagheghi, A., Evans, K., Chou, Y.C. and Zhang, M. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Applied Biochemistry and Biotechnology 98, 885-898. 2002

    Moxley, G. and Zhang, Y.H.P. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy and Fuels 21 (6), 3684-3688. 2007

    Mussatto, S.I., Dragone, G., Guimaraes, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L. and Teixeira, J.A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances 28 (6), 817-830. 2010

    Neidhardt, J., Benemann, J.R., Zhang, L.P. and Melis, A. Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae). Photosynthesis Research 56 (2), 175-184. 1998

    Nguyen, M.T., Choi, S.P., Lee, J., Lee, J.H. and Sim, S.J. Hydrothermal Acid Pretreatment of Chlamydomonas reinhardtii Biomass for Ethanol Production. Journal of Microbiology and Biotechnology 19 (2), 161-166. 2009

    Nigam, P.S. and Singh, A. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science 37 (1), 52-68. 2011

    Nitisinprasert, S. and Temmes, A. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage sludge. Journal of Applied Bacteriology 71, 154-161. 1991
    NREL. Determination of structural carbohydrates and lignin in biomass. Technical Report. 2008

    Panesar, P.S., Marwaha, S.S. and Kennedy, J.F. Zymomonas mobilis: an alternative ethanol producer. Journal of Chemical Technology and Biotechnology 81 (4), 623-635. 2006

    Petrou, E.C. and Pappis, C.P. Biofuels: A Survey on Pros and Cons. Energy & Fuels 23 (1), 1055-1066. 2009

    Richmond, A. Handbook of microalgal culture : biotechnology and applied phycology. Blackwell Science, Oxford, OX, UK ; Ames, Iowa, USA. 2004

    Rodjaroen, S., Juntawong, N., Mahakhant, A. and Miyamoto, K. High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. Kasetsart Journal 41, 570-575. 2007

    Rodrigues, M.A. and Bon, E.P.D.S. Evaluation of Chlorella (Chlorophyta) as Source of Fermentable Sugars via Cell Wall Enzymatic Hydrolysis. Enzyme Research. 2011

    Rupprecht, J. From systems biology to fuel-Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. Journal of Biotechnology 142 (1), 10-20. 2009

    Sanchez, C. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances 27 (2), 185-194. 2009

    Shi, X.M., Chen, F., Yuan, J.P. and Chen, H. Heterotrophic production of lutein by selected Chlorella strains. Journal of Applied Phycology 9 (5), 445-450. 1997

    Sim, S.J., Choi, S.P. and Nguyen, M.T. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology 101 (14), 5330-5336. 2010

    Sivakumar, G., Vail, D.R., Xu, J.F., Burner, D.M., Lay, J.O., Ge, X.M. and Weathers, P.J. Bioethanol and biodiesel: Alternative liquid fuels for future generations. Engineering in Life Sciences 10 (1), 8-18. 2010

    Skjanes, K., Lindblad, P. and Muller, J. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng 24 (4), 405-413. 2007

    Solomon, B.D., Barnes, J.R. and Halvorsen, K.E. Grain and cellulosic ethanol: History, economics, and energy policy. Biomass & Bioenergy 31 (6), 416-425. 2007

    Sorokin, C. and Krauss, R.W. The Effects of Light Intensity on the Growth Rates of Green Algae. Plant Physiology 33 (2), 109-113. 1958

    Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101 (2), 87-96. 2006

    Stewart, W.D.P. Algal physiology and biochemistry. Blackwell Scientific, Oxford.1974

    Subhadra, B. and Edwards, M. An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38 (9), 4897-4902. 2010

    Suckling, C.J. Enzyme chemistry: impact and applications 311. 1990

    Sun, Y. and Cheng, J.Y. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83 (1), 1-11. 2002

    Sze, P. A biology of the algae. WCB/McGraw-Hill, Boston, Mass. 1998

    Tabak, J. Biofuels. New York: Infobase Publishing. 2009

    Taherzadeh, M.J. and Karimi, K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences 9 (9), 1621-1651. 2008
    Timberlake, K.C. Chemistry : an introduction to general, organic, and biological chemistry. Benjamin Cummings, San Francisco. 2003

    Turpin, D.H. Effects of Inorganic N Availability on Algal Photosynthesis and Carbon Metabolism. Journal of Phycology 27 (1), 14-20. 1991

    Ueda, R., Hirayama, S., Sugata, K. and Nakayama, H. Process for the production of ethanol from microalgae. US Patent 5,578,472. 1996

    Valdes, J.J. Bioremediation. Kluwer Academic Publishers, Dordrecht ; Boston. 2000

    Van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H. and Dijkhuizen, L. Properties and applications of starch-converting enzymes of the alpha-amylase family. Journal of Biotechnology 94 (2), 137-155. 2002

    Vargas, M.A., Rodriguez, H., Moreno, J., Olivares, H., Del Campo, J.A., Rivas, J. and Guerrero, M.G. Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. Journal of Phycology 34 (5), 812-817. 1998

    Vladimirova, M.G., Rudova, T.S., Shatilov, V.R., Salamatova, L.V. and Nazarova, G.D. Comparative Characterization of Chlorella-Pyrenoidosa Chick 82 and Chlorella-Pyrenoidosa Pringsheim 82t under Intensive Culture Conditions. Soviet Plant Physiology 26 (6), 913-920. 1979

    Wang, X., Liu, X.H. and Wang, G.Y. Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol Fermentation. Journal of Integrative Plant Biology 53 (3), 246-252. 2011

    Wijffels, R.H. and Barbosa, M.J. An outlook on microalgal biofuels. Science 329 (5993), 796-799. 2010

    Wu, C.Z., Yin, X.L., Yuan, Z.H., Zhou, Z.Q. and Zhuang, X.S. The development of bioenergy technology in China. Energy 35 (11), 4445-4450. 2010
    Yamada, T. and Sakaguchi, K. Comparative Studies on Chlorella Cell-Walls - Induction of Protoplast Formation. Archives of Microbiology 132 (1), 10-13. 1982

    Yeh, K.L., Chang, J.S. and Chen, W.M. Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences 10 (3), 201-208. 2010

    Zheng, Y., Chen, Z.A., Lu, H.B. and Zhang, W. Optimization of carbon dioxide fixation and starch accumulation by Tetraselmis subcordiformis in a rectangular airlift photobioreactor. African Journal of Biotechnology 10 (10), 1888-1901. 2011

    Zhu, J.Y. and Pan, X.J. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource Technology 101 (13), 4992-5002. 2010

    Zhukova, T.S., Klyachko-Gurvich, G.L., Vladimirova, M.G., Kurnosova, T.A. and T.A., n. Comparative characterization of the growth and direction of biosynthesis of various strains of Chlorella under conditions of nitrogen starvation. II. Formation of carbohydrates and lipids. Soviet Plant Physiol 16, 79-83. 1969

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE