| 研究生: |
彭翾 Peng, Hsuan |
|---|---|
| 論文名稱: |
NS1643 (二苯尿素機團化合物) 對腦下垂體前葉腫瘤細胞上大型電導鈣離子活化鉀離子通道的作用 The Role of NS1643, a Diphenylurea Compound, on the Large-Conductance Ca2+-Activated K+ Channel in Pituitary Tumor (GH3) Cells |
| 指導教授: |
吳勝男
Wu, Sheng-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 腦垂體前葉腫瘤細胞 、NS1643 、動作電位 、L型鈣離子通道 、大型電導鈣離子活化鉀離子通道 |
| 外文關鍵詞: | large-conductance Ca2+-activated K+ channel, L-type Ca2+ channel, action potential, GH3 cell, NS1643 |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NS1643 (1,3-bis-[2-hydroxy-5-(trifluoromethyl)phenyl]-urea)為近幾年由NeuroSearch藥廠新開發的藥物,目前的研究已經證實了NS1643可以活化位於非洲滑爪蟾的卵和哺乳動物HEK293細胞上的ERG鉀離子通道,並且也被期許在未來可以作為因為基因突變而造成此ERG鉀離子通道功能喪失所引起的心臟疾病-long QT的治療用藥。 除此之外,NS1643此藥物在化學結構上和一些過去認為可以用來調控大型電導鈣離子活化鉀離子通道(BKCa channel)活性的活化劑,例如:NS1619、NS1608和NS11021的化學結構具有一定的相似性,互為相似物。 然而,目前除了已知NS1643可以活化ERG鉀離子通道之外,對於NS1643是否也會影響其他離子通道的活性仍不清楚。 所以在此研究,我們便利用電生理的方式去探討NS1643此化合物對於通過腦垂體前葉腫瘤細胞─GH3上的BKCa channel所產生的電流和細胞膜電位的影響。 在本實驗中首先以whole-cell的方式紀錄,可以看到NS1643能增加通過BKCa channel的電流,且此影響具有濃度依賴性的存在。 而當細胞膜兩側鉀離子等濃度(約為145 毫莫耳)的狀態下,由inside-out的紀錄中可知,NS1643可以增加BKCa channel打開的機率但並不會改變此通道的電導。 藉由進一步的計算可以觀察到NS1643會減少BKCa channel處於關閉狀態時的平均時間,但似乎不會改變通道處於打開狀態時的平均時間。 此化合物也會導致BKCa channel的活化曲線傾向於較不去極化的電位,改變約15毫伏特,且此經由NS1643所調控的離子通道活性也會依據細胞內鈣離子的濃度增加而增加。 再利用current-clamp紀錄,NS1643會明顯地減少細胞膜上動作電位的頻率。 另外,NS1643也可以增加因為利用轉移感染技術將基因α-hslo轉移至HEK293T細胞上所表現出的BKCa channel其活性。 另一方面,由本實驗室先前的研究已知在GH3此細胞模型中,隨著通過細胞膜上L-型鈣離子通道流入細胞內的鈣離子電流增加會造成細胞內的鈣離子濃度增加,而此現象也會間接地導致通過BKCa channel的電流隨之增加。 然而在本研究中並沒有觀察到NS1643具有影響通過GH3細胞上L-型鈣離子通道其電流的能力。 由此研究我們證明了NS1643具有活化腦垂體前葉腫瘤細胞上的BKCa channel的能力,並且增加通過此通道的電流。
NS1643 (1,3-bis-[2-hydroxy-5-(trifluoromethyl)phenyl]-urea) was recently demonstrated to active hERG K+ channels expressed in Xenopus laevis oocytes and mammalian HEK293 cells and as anti-arrhythmic drug to treat long QT syndrome caused from the loss-of-function of hERG K+ channel. In addition, NS1619, NS1608 and NS11021, which were previously demonstrated to be the modulators of BKCa (large-conductance Ca2+-activated K+) channel, are chemical structurally-related compounds of NS1643. However, it remains unknown whether NS1643 could have any effects on other types of ion channels. In this study, electrophysiological measurements will be used to examine the possible effects of NS1643 on ionic BKCa currents and membrane potential in GH3 cells derived from a rat prolactin-secreting pituitary tumor. In whole-cell recordings, NS1643 activated Ca2+-activated K+ currents (IK(Ca)) in a concentration-dependent fashion. In single-channel recordings with an inside-out configuration performed in symmetrical K+ solution (145 mM), NS1643 enhanced the probability of BKCa-channel openings with no change in single-channel conductance. Alternatively, mean closed time of BKCa channels was reduced in the presence of NS1643, but no significant change in mean open time was observed. This compound caused the activation curve of BKCa channels to less depolarized voltages by approximately 15 mV. NS1643-stimulated channel activity depended on intracellular Ca2+ concentration. In current-clamp recordings, NS1643 significantly decreased firing frequency. In addition, NS1643 enhanced BKCa-channel activity in HEK293T cells transfected with α-hslo. On the other hand, the amplitudes of IK(Ca) in GH3 cells were reported to increase by the influx of Ca2+ through L-type Ca2+ channels. However, the NS1643 was not shown to affect L-type Ca2+ currents in GH3 cells. Taken together, we provide the first evidence to show that NS1643 can interact with BKCa channels to increase the amplitudes of IK(Ca) in pituitary tumor (GH3) cells.
1.Adelman, J.P.; Shen, K.Z.; Kavanaugh, M.P.; Warren, R.A.; Wu, Y.N.; Lagrutta, A.; Bond, C.T. & North, R.A. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron. 9, 209-216. (1992).
2.Barrett, J.N.; Magleby, K.L. & Pallotta, B.S. Properties of single calcium-activated potassium channels in cultured rat muscles. J. Physiol. (Lond.) 331, 221-230. (1982).
3.Bentzen, B.H.; Nardi, A.; Calloe, K.; Madsen, L.S.; Olesen, S.P. & Grunnet, M. The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels. Mol Pharmacol. 72, 1033-1044 (2007).
4.Brenner, R.; Chen, Q.H.; Vilaythong, A.; Toney, G.M.; Noebels, J.L.; Aldrich, R.W. BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci. 8, 1752-1759 (2005).
5.Bukiya, A.N.; Ligia Toro, J.L. & Dopico, A.M. β1 (KCNMB1) subunits mediate lithocholate activation of large-conductance Ca2+-activated K+ channels and dilation in small, resistance-size arteries. Mol Pharmacol 72, 359-389 (2007).
6.Carl A. &Sanders K.M. Measurement of single channel open probability with voltage ramps. J Neurosci Methods. 33, 157-163 (1990).
7.Casis, O.; Olesen, S.-P. & Sanguinetti, M.C. Mechanism of action of a novel human ether-a-go-go-related gene channel activator. Mol Pharmacol. 69, 658-665 (2006).
8.Diness, T.G.; Hansen, R.S.; Olesen, S.P.; Grunnet, M. Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels. Biochem Biophys Res Commun. 343, 1224-1233 (2006).
9.Du, W.; Bautista, J.F.; Yang, H.; Diez-Sampedro, A.; You, S.A; Wang, L.; Kotagal, P.; Lüders, H.O.; Shi, J.; Cui, J.; Richerson, G.B.; Wang, Q.K. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet. 37, 733-738 (2005).
10.Fakler, B. & Adelman, J.P. Control of KCa channels by calcium nano/microdomains. Neuron. 59, 873-881 (2008).
11.Garcia-Calvo, M.; Knaus, H.G.; McManus, O.B.; Giangiacomo, K.M.; Kaczorowski, G.J. & Garcia, M.L. Purification and reconstitution of the high-conductance, calcium-activated potassium channels from tracheal smooth muscle. J Biol Chem. 269, 676-682 (1994)
12.Ghatta, S.; Nimmagadda, D.; Xu, X. & O’Rourke, S.T. Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther. 110, 103-116 (2006).
13.Glassmeier, G.; Hauber, M.; Wulfsen, I.; Wulfsen, I.; Weinsberg, F.; Bauer, C.K.; Schwarz, J. R. Ca2+ channels in clonal rat nterior pituitary cells (GH3/B6). Pflügers Arch – Eur J Physiol. 442, 577-587 (2001).
14.Gola, M. & Crest, M. Colocalization of active KCa channels and Ca2+ channels with Ca2+ domains in helix neurons. Neuron. 10, 689-699 (1993).
15.Hansen, R.S.; Diness, T.G.; Christ, T.; Demnitz, J.; Ravens, U.; Olesen, S.-P. & Grunnet, M. Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Mol Pharmacol. 69, 266-277 (2006).
16.Holland, M.; Langton, P.D.; Standen, N.B. & Boyle, J.P. Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol. 117, 119-129 (1996).
17.Hou, S.; Heinemann, S.H. & Hoshi, T. Modulation of BKCa channel gating by endogenous signaling molecules. J Physiol. 24, 26-35 (2009).
18.Keating, M.T. & Sanguinetti, M.C. Molecular and cellular mechanisms of cardiac arrhythmias Cell. 104, 569-580 (2001).
19.Latorre, R.; Vergara, C. & Hidalgo, C. Reconstitution in planar lipid bilayer of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. PNAS. 79, 805-809 (1982).
20.Li, H.F.; Chen, S.A.; Wu, S.N. Evidence for the stimulatory effect of resveratrol on Ca2+-activated K+ current in vascular endothelial cells. Cardiovasc Res. 45, 1035-1045 (2000).
21.Lu, H.R.; Vlaminckx, E.; Hermans, A.N.; Rohrbacher, J.; Van Ammel, K.; Towart, R.; Pugsley, M.; Gallacher, D.J. Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B Guidelines. Br J Pharmacol. 154, 1427-1438 (2008).
22.Marcantoni, A.; Baldelli, P.; Hernandez-Guijo, J.M.; Comunanza, V.; Carabelli, V.; Carbone, E. L-type calcium channels in agrenal chromaffin cells: Role in pace-making and secretion. Cell Calcium. 42, 397-408 (2007).
23.McKay, M.C.; Dworetzky, S.I.; Meanwell, N.A.; Olesen, S.P.; Reinhart, P.H.; Levitan, I.B.; Adelman, J.P. & Gribkoff, V.K. Opening of large-conductance calcium-activated potassium channels by the substituted benzimidazolone NS004.J Neurophysiol. 71, 1873-1882 (1994).
24.McManus, O.B.; Blatz, A.L. & Magleby, K.L. Sampling, log binning, fitting, and plotting duration of open and shut intervals from single channels and the effect of noise. Pflugers Arch. 410, 530-553 (1987).
25.Moczylowski, E. & Latorre, R. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers: Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol. 82, 511-542. (1983).
26.Nardi, A. & Olesen, S.P. BK channel modulators: a comprehensive overview. Curr. Med. Chem. 15, 1126-1146 (2008).
27.Ohya, S.; Kuwata, Y.; Sakamoto, K.; Muraki, K.; Imaizumi, Y. Cardioprotective effects of estradiol include the activation of large-conductance Ca2+-activated K+ channels in cardiac mitochondria. Am J Physiol Heart Circ Physiol. 278, H1635-1642 (2005).
28.Robitaille, R.; Garcia, M.L.; Kaczorowski, G.J. & Chariton, M.P. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron. 11, 645-655 (1993).
29.Sausbier, M.; Hu, H.; Arntz, C.; Feil, S.; Kamm, S.; Adelsberger, H.; Sausbier, U.; Sailer, C.A.; Feil, R.; Hofmann, F.; Korth, M.; Shipston, M.J.; Knaus, H.-G.; Wolfer, D.P.; Pedroarena, C.M.; Storm, J.F. & Ruth, P. Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. PNAS. 101, 9474-9478 (2004).
30.Shen, K.Z.; Lagrutta, A.; Davies, N.W.; Standen, N.B.; Adelman, J.P. & North, R.A. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: Evidence for tetrameric channel formation. Pflugers Arch. 426, 440-445. (1994).
31.Shruti, S.; Clem, R.L. & Barth, A.L. A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons. Neurobiol Dis. 30, 323-330 (2008).
32.Stocker, M. Ca2+-activated K+ channels: Molecular determinants and function of the SK family. Nat Rev Neurosci. 5, 758-770 (2004).
33.Strøbaek, D.; Christophersen, P.; Holm, N.R.; Moldt, P.; Ahring, P.K.; Johansen, T.E. & Olesen, S.P. Modulation of the Ca(2+)-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+. Neuropharmacology. 35, 903-14 (1996).
34.Tsaneva-Atanasova, K.; Sherman, A.; van Goor, F.; Stojilkovic, S.S. Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: Experiments and theory. J Neurophysiol. 98, 131-144 (2007)
35.Valverde, M.A.; Rojas, P.; Amigo, J.; Cosmelli, D.; Orio, P.; Bahamonde, M.I.; Mann, G.E.; Vergara, C.; Latorre, R. Acute activation of Maxi-K channels (hSlo) by estradiol binding to the β subunit. Science. 285, 1929-1931 (1999).
36.Vergara, C.; Latorre, R.; Marrion, N.V.; Adelman, J.P. Calcium-activated potassium channels. Curr Opin Neurobiol. 8, 321-320. (1998).
37.Wu, S.N.; Chiang, H.T.; Shen, A.Y.; Lo, Y.K. Differential effects of quercetin, a natural polyphenolic flavonoid, on L-type calcium current in pituitary (GH3) cells and neuronal NG108-15 cells. J Cell Physiol. 195, 298-308 (2003).
38.Wu, S.N.; Jan, C.R.; Li, H.F. and Chiang, H.T. Characterization of inhibition by risperidone of inwardly rectifying K+ current in GH3 cells. Neuropsychopharmacology. 23, 676-689 (2000).
39.Wu, S.N.; Li, H.F. and Chiang, H.T. Stimulatory effects of δ-hexachlorocyclohexane on Ca2+-activated K+ currents in GH3 latotrophs. Mol Pharmacol. 57, 865-874 (2000).
40.Xia, X.M.; Zeng, X. & Lingle, C.J. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature. 418, 880-884 (2002).