簡易檢索 / 詳目顯示

研究生: 馮長治
Feng, Chang-Chih
論文名稱: 水庫淤泥製成輕質無機聚合物
Light weight geopolymers from water reservoir sediment
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 水庫淤泥水淬爐石粉無機聚合物發泡劑
外文關鍵詞: water reservoir sediment, slag, geopolymers, foaming agent
相關次數: 點閱:147下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地區因自然及人為因素導致水庫淤積快速,現階段水庫浚渫後之淤泥多以棄置處理,此法不但不符合經濟效益且易造成第二次傷害,若能予以資源化再利用,可達到環境與經濟雙贏的效果。淤泥本身具有大量之矽、鋁來源,若能有效將其應用於無機聚合物,其具有強度且具有較低之熱傳導性、低體密度等之優良性能,可於建材使用,不僅能有效消耗淤泥之問題,更能對環境盡一份心力。
    無機聚合物具有低能耗,且具有卓越之物理與化學性質,為一種類似沸石之結構,其與沸石最大的差異為結晶度不同,沸石具有高度的結晶性,而無機聚合物則為非晶質之結構。本實驗以添加水淬爐石粉提高無機聚合物之膠結性能,當鹼性溶液與水庫淤泥及水淬爐石粉混合後,會將粉體材料中之矽、鋁、鈣離子溶出,並互相鍵結形成Si-O-Si(Al)支架狀結構與C-S-H膠體等兩種生成物。
    本研究可分為三個部分,(1) 水淬爐石粉之取代量;(2)鹼液濃度;(3)發泡劑種類。
    經由XRD以及SEM微觀圖之結果顯示,採用水淬爐石粉作為本研究之部分膠結材料,其與鹼液混合經過水化反應後,可生成C-S-H膠體,當鹼液濃度越高,其C-S-H膠體之結晶相較於明顯,而當養護時間增加,其C-S-H膠體之結晶相亦會隨著養護時間增加而增加。以爐石添加30wt%,當Si/Na比採用1.25及1.5時,其抗壓強度可符合普通磚15Mpa之抗壓強度標準;調整鹼液濃度使Si/Na比為1.25時,當發泡劑採用金屬鋁粉其添加量為0.01wt%,可達普通磚之規範;而當發泡劑採用金屬鋁粉其添加量為0.02wt%時,可符合ALC輕質磚種類G10之規範;而當採用發泡劑為金屬鋁粉其添加量為0.03wt%時,可符合ALC輕質磚種類G8之規範。當發泡劑採用過硼酸鈉,其添加量為1 wt%,當L/S為0.7及0.8時,分別可符合ALC輕質磚G8及G10種類之規範標準。
    關鍵詞:水庫淤泥、水淬爐石粉、無機聚合物、發泡劑

    SUMMARY
    Water reservoir sediment is a kind of weathering product that precipitates at the bottom of reservoirs. It reduces the capacity of reservoirs and shortens their usage life. In order to extend the usage life of reservoirs, a dredging process is employed. The excavated sediment is usually buried or disposed of downriver, damaging the ecology. To solve this problem reservoir sediment was used to manufacture geopolymers.
    Geopolymers were well developed in recent years. The structure of geopolymers is similar to zeolite. The difference lies in that zeolite has higher crystallinity, while geopolymers are amorphous substances. Geopolymers are well used as construction material because of its excellent property of fire resistance and high mechanical strength.
    In this study, the solid portion was adjusted by mixing slag with water reservoir sediment. Slag was added as the cementitious material into geopolymers. Slag is rich of CaO and able to be dissolved in high concentration of alkaline solution. The dissolved calcium ions further reacted to produce calcium silicon hydrate.
    However, the material used in the construction may be doubted about its overweight.To lightweight the material, foaming agent was adopted in the study.
    When 0.02 wt% aluminum powder was added as foaming agent into soild portion, the products were fitted the regulations of G10 ALC autoclaved lightweight aerated concrete. In addition, 0.03 wt% aluminum powder was added as foaming agent into soild portion, the products were fitted the regulations of G8 ALC autoclaved lightweight aerated concrete. On the other hand, when 1wt% Sodium perborate was added as foaming agent into soild portion, with L/S in 0.7 and 0.8, the products were fitted the regulations of G10 and G8 ALC autoclaved lightweight aerated concrete.

    Key word:water reservoir sediment, slag, geopolymers, foaming agent

    目錄 第一章 緒論 1 1-1前言 1 1-2研究動機 1 1-3研究目的 2 第二章 理論基礎與文獻回顧 3 2-1水庫淤積概況 3 2-1-1水庫淤泥形成因素 3 2-1-2水庫淤泥淤積概況 3 2-1-3水庫淤泥處理 7 2-2爐石簡介 8 2-2-1爐石分類 9 2-2-2爐石利用概況 10 2-2-3爐石化學性質 11 2-2-4爐石粉之顆粒性質 11 2-2-5爐石粉運用在混凝土 12 2-2-6鹼激發爐石 12 2-3無機聚合物之概述 12 2-3-1無機聚合物之結構 14 2-3-2無機聚合物之反應機理 17 2-3-3無機聚合物之特性 19 2-3-4無機聚合物之影響因素 20 2-3-5無機聚合物之優缺點 22 2-4鹼活化之技術 23 2-4-1鹼活化技術之反應機理 23 2-4-2鹼活化技術之優缺點 24 2-5複合無機聚合物 24 2-6輕質混凝土 25 2-6-1輕質混凝土之種類 25 2-7相關規範 27 2-7-1 CNS-13480高溫蒸氣養護輕質氣泡混凝土磚 27 2-7-2 CNS-382普通磚規範 28 2-8前人研究 29 第三章 實驗方法與步驟 31 3-1實驗材料 31 3-1-1水庫淤泥 31 3-1-2水淬爐石粉 32 3-1-3矽酸鈉 33 3-1-4氫氧化鈉 34 3-1-5發泡劑 34 3-2實驗流程 34 3-3性質分析及檢測儀器 36 3-4實驗代號 40 第四章 結果與討論 41 4-1水淬爐石粉之添加量對無機聚合物之工程性質影響 41 4-2 Si/Na對無機聚合物之工程性質影響 43 4-3發泡劑對無機聚合物之影響 54 4-3-1添加金屬鋁粉對無機聚合物之影響 54 4-3-2添加過硼酸鈉對無機聚合物之影響 62 第五章 結論 69 文獻回顧 70

    文獻回顧
    1. 經濟部水利署,「近5年(99-103)水庫清淤量統計」,2015。
    2. 中國國家標準CNS1240號。
    3. 經濟部水利署各項用水統計資料庫,「103年蓄水設施水量營運統計報告」,2015。
    4. 經濟部水利署,「現有水庫或壩堰概況」,2015。
    5. 吳素禎等人,「水庫淤泥固化及棄置」,中興工程顧問社/專案研究報告,1999。
    6. 許伯良、林平全、徐登科,「轉爐石產製與工程應用」,2011年轉爐石應用於瀝青混凝土鋪面研討會,2011。
    7. 中聯資源股份有限公司網站。
    8. 中鋼公司工安環保處,爐石利用推廣手冊,1999。
    9. 黃兆龍,「混凝土性質與行為」,詹氏書局 (1999)。
    10. ASTM-C618
    11. 黃兆龍,「卜作嵐混凝土使用手冊」,財團法人中興工程顧問社」(2007)。
    12. 中國國家標準CNS12223號。
    13. 林育緯,「不同激發劑對爐石飛灰無機聚合物工程性質之影響」,國立台灣科技大學營建工程系,2012。
    14. 陳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所,2009。
    15. Escalante-Garia J I, Wspinoza-Perez L J, and Gorokhovshy A, et al.”Coarse blast furnace of Portland cement and as an alkali activated cement,”Construction and building materials, pp.2511-2517 (2009).
    16. Shi, C., and Day, R. L., “Selectivity of alkaline activators for the activation of slag,” Cement, Concrete and Aggregates, Vol. 18, No. 1, pp. 8-14 (1996).
    17. 林湧昱,「以電弧爐還原碴製成複合無機聚合物之研究」,國立中央大學土木工程研究所,2012。
    18. Xu H., and Van Deventer J. S. J,“The geopolymerisation of alumino-silicate minerals,” International Journal Minerals Process,59,pp.247-266 2000.
    19. 張瑜文,「水庫淤泥應用於無機聚合膠結材」,國立成功大學土木工程研究所,2008。
    20. 鄭大偉,「無機聚合技術的發展應用及回顧」,礦冶,第54 卷,第1期,第141-157 頁(2010)。
    21. S. E. Wallah, D. Hardjito, D. M. J. Sumajouw and B. V. Rangan, “Proceeding of the 21st biennial conference of concrete institute of Australia", pp. 205.
    22. J.Davidovits “PROPERTIES OF GEOPOLYMER CEMENTS” Kiev, Ukraine, 1994, pp. 131-149 1994.
    23. Phair, J.W., Smith, J.D. & Van Deventer, J.S.J., Characteristics of aluminosilicate hydrogels related to commercial Geopolymers, Materials Letters, 2003, 57(28): 4356-4367.
    24. Duxson P., Provi J. L., Lukey G. C., Separovic F., and Van Deventer J. S.J.(2005), “ 29Si NMR study of structural ordering in aluminosilicate geopolymer gels,”Langmuir, 21(7), pp. 3028-3036.
    25. J. W. Phair, J. D. Smith and J. S. J. van Deventer, “Characteristics of aluminosilicate hydrogels related to commercial "Geopolymers"”, Materials Letters, vol. 57, 2003, pp. 4356-4367.
    26. J. Davidovits, "Geopolymer Chemistry & Application", France: Institute Géopolymère, 2008, pp. 394.395.
    27. Xu, H., Van Deventer, J. S. J., and Luckey, G. C., “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” Industrial Engineering Chemical Research, Vol. 40, pp.3749-3756 (2001).
    28. P. Duxson A A. Ferna´ndez-Jime´nez A J. L. Provis A ,G. C. Lukey A A. Palomo A J. S. J. van Deventer,“Geopolymer technology: the current state of the art”, J Mater Sci (2007) 42:2917–2933.
    29. Van Jaarsveld J. G. S., Van Deventer J. S. J., and Lorenzen L.(1997),“ The potential use of geopolymeric materials to immobilize toxic metals: Pare I. theory and applications,”Minerals Engineering, 10(7), pp. 659-669.
    30. J. G. S. Van Jaarsveld, J. S. J. Van Derventer and L. Lorenzen, "The potentiall use of geopolymeric materials to immobolise toxic metals: Part Ι Theory and applications", Minerals Engineering, vol. 10, 1997, pp. 659-669.
    31. T. Bakharev, "Resistance of geopolymer materials to acid attack, geopolymers, Cement and Concrete Research", vol. 35, 2005, pp.658-670.
    32. 枋吟霞,利用焚化灰渣之水淬熔渣製成無機聚合材料之研究,碩士論文,國立台北科技大學資源工程研究所,台北,2008。
    33. Phair J. W., Van Deventer J. S. J., and Smith J. D.(2004),“ Effect of Al source and alkali activation on Pb and Cu immobilization in fly-ash based “geopolymers”,”Applied Geochemistry, 19, pp. 423-434.
    34. Xu J. Z., Zhou Y. L., Chang Q., and Qu H. Q.(2006),“ Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers,”Materials Letters, 60, pp. 820-822.
    35. Xu, H., Van Deventer, J. S. J., Lukey, G. C., Effect of alkali metals onthe preferential geopolymerization of stilbite/kaolinite mixtures,Industrial & Engineering Chemistry Research, 40, 3749-3756, 2001.
    36. Fernandez-Jimenez, A., Palomo, J. G., Puertas, F., Alkali-Activated Slag Mortars Mechanical Strength Behaviour, Cement and Concrete Research,29, 1313-1321, 1999.
    37. Shi, C., Day, R. L., Some Factors Affecting Early Hydration of Alkali-Slag Cements, Cement and Concrete Research, 26, 439-417,1996.
    38. Metha, P. K., Reducing the environmental impact of concrete, ACI Concrete International, 23(10), 61-66, 2001.
    39. 馬鴻文、楊靜、任玉峰、凌發科,礦物聚合材料: 研究現狀與發展前景,地學前緣,第9 卷第4 期,397-407,2002。
    40. 戴詩潔,高嶺石鋁矽酸鹽聚合材料之研究,碩士論文,台北科技大學材料及資源工程系,2005。
    41. Weng, L., Crentsil, K. S., Brown, T., Song, S., Effect of aluminates on the formation of geopolymer, Materials Science and Engineering B, 117, 163-168, 2005.
    42. 馬鴻文、凌發科、楊靜、王剛,「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報,北京,第二十七卷,第五期,第576 - 583 頁 (2002)。
    43. Wang, S. D., Pu, X. C., Scrivener, K. L., and Pratt, P. L., “Alkali -activated cement and concrete. A review of properties and problems,”Advances in Cement Research, Vol. 7, pp. 93-102 (1995).
    44. Lloyd, R. R., Provis, J. L., and Van Deventer, J. S. J., “Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder,” Journal of Materials Science, Vol. 44, No. 2, pp. 620 – 631 (2009).
    45. Duxson P., Provis J.L., Lukey G.C., Mallicoat S.W., Kriven W.M., and Van Deventer J.S.J., “ Understanding the relationship between geopolymer composition,” microstructure and mechanical properties, Colloids and Surfaces A: Physicochem. Eng. Aspects, 269, pp. 47-58,2005.
    46. Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., “Effect of Elevated temperature curing on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 10, pp.1619-1625 (1999).
    47. Swanepoel J. C., and Strydom C. A.,“ Utilisation of fly ash in a geopolymeric material, ” Applied Geochemistry, 17(8), pp. 1143-1148(2002).
    48. 代新祥,「鹼激活土聚水泥的製備、結構與性能」,博士論文,華南理工大學(2002)。
    49. Shi C., and Day R. L.(1996),“ Some factors affecting early hydration of alkali-slag cement,”Cement and Concrete Research, 26(3), pp. 439-447.
    50. C.K. Yip, G.C. Lukey, J.S.J. van Deventer, “The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation”, Cement and Concrete Research 35 (2005) 1688– 1697.
    51. Jimenez A. F., Palomo J. G., and Puertas F.(1999),“ Alkali-activated slag mortars mechanical strength behavior,”Cement and Concrete Research, 29, pp. 1313-1321.
    52. Yip, C. K., Lukey, G. C., Van Deventer, J. S. J., The coexistence of geopolymeric gel and calcium silicate hydrateat the early stage of alkaline activation, Cement and Concrete Research, 35, 1688-1697, 2005.
    53. 林維明 吳介源 “當前輕質粒料混凝土應用的重要性”台灣公路工程,第二十六卷 第五期 pp.36-48,(1999)。
    54. 黃國城,「無機聚合包裹中空球無細混凝土之工程性質」,國立成功大學土木工程研究所,2008。
    55. Tonyan T.D.,Gibson L.J., “Structure and mechanics of cement foams”, Journal of Materials Science , Vol.27 , pp6371-6378 , 1992
    56. Zuhua Zhang , John L. Provis, Andrew Reid , Hao Wang, “Geopolymer foam concrete: An emerging material for sustainable construction”, Construction and Building Materials 56 (2014) 113–127.
    57. CNS-13480高壓蒸氣養護輕質氣泡混凝土磚規範。
    58. CNS-382普通磚規範。
    59. Giulia Masi, William D.A. Rickard, Les Vickers, Maria Chiara Bignozzi, Arie van Riessen,“A comparison between different foaming methods for the synthesis of lightweight geopolymers”, Ceramics International 40 (2014) 13891–13902.

    60. Paola Palmero, Alessandra Formia,Paola Antonaci,Simona Brini,Jean-Marc Tulliani, “Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization”, Volume 41, Issue 10, Part A, December 2015, Pages 12967–12979.
    61. Jay G. Sanjayan, Ali Nazari, Lei Chen, Giang Hoang Nguyen, “Physical and mechanical properties of lightweight aerated geopolymer”, Construction and Building Materials 79 (2015) 236–244.
    62. Nuran Boke, Grant D. Birch, Sammy M. Nyale, Leslie F. Petrik, “New synthesis method for the production of coal fly ash-based foamed geopolymers”, Construction and Building Materials 75 (2015) 189–199.
    63. 曾美鈴、張添益,「無機聚合物金屬發泡不同操作敖鍵之探討」,中國鑛冶工程學會九十九年年會宣讀之論文,P.77-82,2010。

    下載圖示 校內:2020-09-22公開
    校外:2020-09-22公開
    QR CODE