簡易檢索 / 詳目顯示

研究生: 宋奕輝
Sung, I-Hui
論文名稱: 釔鋁鈣鈦礦陶瓷的微結構與微波介電性質之研究
Investigation on the microstructure and microwave dielectric properties of YAlO3 ceramics
指導教授: 黃肇瑞
Huang, Jow-lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 釔鋁鈣鈦礦微波介電性質介電陶瓷
外文關鍵詞: dielectric ceramics, microwave dielectric properties, YAlO3
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊頻率往高頻化發展,使得發展高品質因子的微波介電陶瓷為未來的趨勢。LnAlO3系列陶瓷,由於其擁有優異的品質因子且製程條件較容易,因此,適合用於高微波特性之低溫共燒陶瓷中。在此系列中,YAlO3雖然具有極高的Q x f 值,然而,必須要在較高的燒結溫度下才可獲得緻密的燒結體,因此,降低YAlO3陶瓷的燒結溫度便是一項相當重要的研究課題。
    在本論文研究的第一部分,即利用固相反應合成法合成釔鋁鈣鈦礦(YAlO3)的粉末,並添加不同含量之助燒結劑B2O3於合成之釔鋁鈣鈦礦(YAlO3)陶瓷內,研究其燒結行為、微結構以及微波介電性質之影響。實驗結果顯示利用1400℃/2h 進行煅燒可得到最少雜相之粉末,所合成的YAlO3粉末分別加入2、4、6wt%之助燒結劑B2O3均勻混合後,以1550-1650℃/9h進行燒結。結果顯示添加B2O3助燒結劑有助於提升YAlO3陶瓷之視密度,其中添加2wt% B2O3於1650℃燒結所合成之YAlO3,其視密度值可高達5.18g/cm3(相對密度97%),且其介電常數值可達15.06,此與YAlO3陶瓷之介電常數理論值15.7相當接近,其後隨著B2O3添加量的增加而介電常數逐漸下降,其主要原因為B2O3的介電常數值低於YAlO3;而最大之Q x f值為添加4wt% B2O3的YAlO3陶瓷,其值為12,724GHz。
    在本論文研究的第二部分,即利用反應燒結法直接添加不同含量之燒結促進劑B2O3於起始粉末(Y2O3及Al2O3)內,未經煅燒的步驟直接將其進行燒結,研究其燒結行為、微結構以及微波介電性質之影響,實驗結果顯示,助燒結劑(B2O3)的添加量於2wt%以上時所合成之YAlO3陶瓷可於燒結溫度1500℃時即達燒結緻密的效果,其降低燒結溫度的效果優於本研究第一部分,添加2wt%B2O3於YAlO3陶瓷,於1500℃燒結9小時時即可獲得燒結緻密之試片,且仍具有較佳之微波介電性質:介電常數εr 為14.7,Q x f值為23,774 GHz, τf 為-91.5 ppm/℃。
    在本論文研究的第三部分,即利用固相反應合成法合成xYAlO3 – (1-x) CaTiO3陶瓷(0.1≦x≦0.9),研究x值對燒結行為、微結構以及微波介電性質之影響,實驗結果顯示YAlO3及CaTiO3呈現固溶的現象,晶格常數及單位晶胞體積隨著x值的增加而逐漸下降,主要是由於A-site及B-site位置同時置換入較小的離子所致;xYAlO3 – (1-x) CaTiO3陶瓷的介電常數隨著x值的增加而降低,主要是因為YAlO3的介電常數低於CaTiO3所造成的結果,而在x = 0.5時,xYAlO3 – (1-x) CaTiO3陶瓷可在1500℃燒結9小時下即可獲得緻密之燒結體,並擁有良好的微波介電性質:介電常數εr為26.1,Q x f值為24,656 GHz, τf 為-61.0 ppm/℃。

    As the telecommunication and satellite broadcasting industry develop for high frequency bands, the demand for microwave dielectric ceramics is relatively high Q x f value. There are excellent Q x f value and the process is much easier than others materials for LnAlO3 series ceramics, so they suit to apply for high frequency bands. Although YAlO3 ceramics has excellent microwave dielectric properties in this series ceramics, the sintering temperature is too high to get compact bulk. This is important topic for YAlO3 ceramics to lower sintering temperature.
    In first part of this research, The YAlO3 powders were synthesized by conventional solid state method. The influences of different amount of sintering additive (B2O3) in the YAlO3 ceramics were investigated in respect of sintering behavior, microstructure and microwave dielectric properties by using density measurement, XRD, SEM and cavity method. Experimental results show that using the calcining conditions of 1400℃/2h to synthesize YAlO3 powders which can get the least amount of second phase. Adding sintering additive (B2O3) in the YAlO3 ceramics can increase apparent density values. When adding 2 wt% B2O3 in the YAlO3 ceramics, apparent density value can up to 5.18g/cm3 (relative density value is 97%). And the dielectric constant can up to 15.06. This value is very close to the theoretical values of YAlO3 ceramics. When adding 4 wt% B2O3 in the YAlO3 ceramics, Q x f value can up to 12,724GHz.
    In second part of this research, the different amount of sintering additive (B2O3) in the YAlO3 ceramics were synthesized by reactive sintering method. The influences of different amount of sintering additive (B2O3) in the YAlO3 ceramics were investigated in respect of sintering behavior, microstructure and microwave dielectric properties by using density measurement, XRD, SEM and cavity method. Adding 2 wt% B2O3 in YAlO3 ceramics can get compact bulk at 1500℃. The YAlO3 ceramics with 2 wt% B2O3 which was sintered at 1500℃ for 9 hours could have a good sintering density and maintain good microwave dielectric properties:εr = 14.7, Q x f = 23,774 GHz, τf = -91.5 ppm/℃.
    In third part of this research, The xYAlO3 – (1-x) CaTiO3 ceramics (0.1≦x≦0.9) were synthesized by conventional solid state reactive method. The influences of x value in the xYAlO3 – (1-x) CaTiO3 ceramics were investigated in respect of sintering behavior, microstructure and microwave dielectric properties by using density measurement, XRD, SEM and cavity method. Experimental results show that YAlO3 and CaTiO3 are complete solid solution. The lattice parameters and unit cell volume increase with x value increases. This is because that A and B site of the structure of ABO3 were substituted for small ions at the same time. The dielectric constant of xYAlO3 – (1-x) CaTiO3 ceramics decreases with x value increasing. This is because that the dielectric constant of YAlO3 is lower than CaTiO3. The xYAlO3 – (1-x) CaTiO3 ceramics for x = 0.5 which was sintered at 1500℃ for 9 hours could have a good sintering density and maintain good microwave dielectric properties:εr = 26.1, Q x f = 24,656 GHz, τf = -61.0 ppm/℃.

    總目錄 中文摘要 I Abstract III 誌謝 V 總目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 實驗動機與目的 1 第二章 理論基礎及文獻回顧 3 2-1 微波介電性質 3 2-1-1 介電常數 3 2-1-2 介電品質因子 7 2-1-3 共振頻率溫度係數 9 2-2 微波介電陶瓷材料 9 2-3 介電共振器原理 11 2-4 燒結理論 17 2-4-1 燒結的驅動力 17 2-4-2 燒結的種類 19 2-4-3 燒結的過程 20 2-4-4 影響燒結的因素 24 2-4-5 降低燒結溫度之方法 25 第三章 實驗步驟與原理 26 3-1 實驗步驟 26 3-1-1 添加B2O3助燒結劑於YAlO3陶瓷(經過煅燒)之製程 26 3-1-2 添加B2O3助燒結劑於YAlO3陶瓷(未經煅燒)之製程 29 3-1-3 x YAlO3 - (1-x) CaTiO3陶瓷的製備 29 3-2 密度量測 33 3-3 燒結體微結構分析與觀察 33 3-3-1 晶相分析 33 3-3-2 SEM 微結構觀察 34 3-4 微波介電性質量測 34 3-4-1 平行金屬板介質量測法 34 3-4-2 共振腔量測法(cavity method) 35 第四章 結果與討論 37 4-1 助燒結劑(B2O3)對於YAlO3陶瓷(經過煅燒)之影響 37 4-1-1 YAlO3粉末之合成 37 4-1-2 助燒結劑(B2O3)對於YAlO3陶瓷(經過煅燒)之影響 41 4-1-2-1 燒結行為研究 41 4-1-2-2 SEM微結構分析 45 4-1-2-3 結晶結構與相分析 50 4-1-2-4 微波介電性質 53 4-2 助燒結劑(B2O3)對於YAlO3陶瓷(未經煅燒)之影響 60 4-2-1 燒結行為研究 60 4-2-2 SEM 微結構分析 62 4-2-3 結晶結構與相分析 62 4-2-4微波介電性質 66 4-3 x YAlO3 - (1-x) CaTiO3陶瓷 71 4-3-1燒結行為研究 71 4-3-2 SEM 微結構分析 72 4-3-3結晶結構與相分析 75 4-3-4微波介電性質 81 第五章 結論 87 參考文獻 88

    [1] H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi,Y. Tohdo, T. Okawa, K. Kakimoto, and H. Ogawa, “Microwave-Millimeterwave Dielectric Materials,” Key Engineering Materials, 269, pp.195-198 (2004)
    [2] S. Nomura, K. Toyama, and K. Kaneta, “Ba(Mg1/3Ta2/3)O3 Ceramics with Temperature-Stable High Dielectrics Constant and Low Microwave Loss,” Japanese Journal Applied Physics, 21, pp.624-626 (1982)
    [3] G. Wolfram, and H. Goble, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2) ,” American Ceramic Society Bulletin, 16, pp.1455-1463 (1981)
    [4] P. C. Osbond, R. W. Whatmore, and F. W. Ainger, “The Properties and Microwave Application of Zirconnium Titanate Stannate Ceramics,” British Ceramic Proceedings, 36, pp.167-168 (1985)
    [5] S. Y. Cho, I. T. Kim, and K. S. Hong, “Microwave Dielectric Properties and Applications of Rare-earth Aluminates,” Journal of Materials Research, 14, pp.114-119 (1999)
    [6] A. Feteira, D. C. Sinclair, and M. T. Lanagan, “Structure and Microwave Dielectric Properties of Ca1−xYxTi1−xAlxO3 (CYTA) Ceramics,” Journal of Materials Research, 20, pp.2391-2399 (2005)
    [7] C. S. Hsu, C. L. Huang, and K. H. Hiang, “Microwave Dielectric Properties of B2O3 Doped LaAlO3 Ceramics at Low Sintering Temperature,” Journal of Materials Science, 38, pp.3495 – 3500 (2003)
    [8] C. L. Huang, and K. H. Chiang, “Dielectric Properities of B2O3-doped (1-x)LaAlO3-xSrTiO3 Ceramic System at Microwave Frequency,” Materials Research Bulletin, 37, pp.1941-1948 (2002)
    [9] B. Jancar, D. Suvorov, M. Valant, and G. Drazic, “Characterization of CaTiO3-NdAlO3 Dielectric Ceramics,” Journal of the European Ceramic Society, 23, pp.1391–1400 (2003)
    [10] M. H. Kim, C. S. Woo, S. Nahm, C. H. Choi, H. J. Lee, and H. M. Park, “Crystal Structure and Microwave Dielectric Properties of (1-x)NdAlO3- xCaTiO3 Ceramics,” Materials Research Bulletin, 37, pp.605-615 (2002)
    [11] J. H. Moon, H. M. Jang, H. S. Park, J. Y. Shin, and H. S. Kim, “Sintering Behavior and Microwave Dielectric Properties of (Ca, La)(Ti, Al)O3 Ceramics,” Japanese Journal Applied Physics, 38, pp.6821–6826 (1999)
    [12] 吳朗, 電子陶瓷-介電, 全欣科技圖書 (1994)
    [13] K. Wakine, “Recent Development of Dielectric Resonator Materials and Filters in Japan,” Ferroelectrics, 91, pp. 69-86 (1989)
    [14] S. B. Cohn, “Microwave Bandpass Filters Containing High Q Dielectric Resonator,” IEEE Transactions on Microwave Theory and Techniques, MTT-16, pp.218-227 (1968)
    [15] R. C. Kell, A. C. Grennham, and G. C. E. Olds, “High Permittivity Temperature-Stable Ceramic Dielectric with Low Microwave Loss,” Journal of the American Ceramic Society, 56, pp.352-354 (1973)
    [16] T. Yamaguchi, Y. Komatsu, T. Otobe, and Y. Murakami, “Newly Developed Ternary (Ca,Sr,Ba) Zirconate Ceramic System for Microwave Resonator,” Ferroelectrics, 27, pp.273-276 (1980)
    [17] K. Wakino, K. Minai, and H. Tamura, “Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators,” Journal of the American Ceramic Society, 67, pp.278-281 (1984)
    [18] H. M. O'Bryan, and J. Thomson. JR, “Phase Equilibrium in the TiO2-rich Region of the System BaO-TiO2,” Journal of the American Ceramic Society, 57, pp.522-526 (1974)
    [19] H. M. O'Bryan, J. Thomson. JR, and J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-stable High Permittivity and Low Microwave Loss,” Journal of the American Ceramic Society, 57, pp.450-453 (1974)
    [20] S. Kawashima, I. Nishida, I. Ueda, and H. Ouchi, “Dielectric Properties of Ba(Zn1/3Nb2/3)O3-Ba(Zn1/3Ta2/3)O3 Ceramics,” American Ceramic Society Bulletin, 60, pp.401 (1981)
    [21] D. Kajfez, “Computed Model Field Distribution for Isolated Dielectric Resonators,” IEEE Transactions on Microwave Theory and Techniques , MTT-32, pp.1609-1616 (1984)
    [22] D. Kajfez, “Basic Principle Give Understanding of Dielectric Wave-guides and Resonators,” Microwave System News, 13, pp.152-161 (1983)
    [23] D. Kajfez, and P. Guillon, “Dielectric Resonators,” McGraw-Hill, New York, (1989)
    [24] W. J. Huppmann, and G. Petzow , “The Elementary Mechanisms of Liquid Sintering,” Sintering Processes, Plenum Press, pp.189-202 (1979)
    [25] W. D. Kingery, and M. D. Marasimham, “Densification during Sintering in Presence of a Liquid Phase,” Journal of Applied Physics, 30, pp.307-310 (1959)
    [26] W. D. Kingery, H.K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics,” 2nd-Edition, John Wiley & Sons (1975)
    [27] B. W. Hakki, and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in Millimeter Range,” IRE Tran. On
    Microwave Theory and Techniques, 8, pp.402-410 (1960)
    [28] W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Transactions on Microwave Theory and Techniques, MTT-18, pp.476-485 (1970)
    [29] Y. Kobayashi, and M. Katohy, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Transactions on Microwave Theory and Techniques, MTT-33, pp.586-592 (1985).
    [30] Y. Kobayashi, and S. Tanaka, “Resonant Modes of a Dielectric Rod Resonator Short – Circuited at Both Ends by Parallel Conducting Plates,” IEEE Transactions on Microwave Theory and Techniques”, MTT-28, pp.1077-1085 (1980)
    [31] P. Wheless, and D.Kajfez, “The Use of Higher Resonant Modes in
    Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Microwave Symposium Digest, MTT-S International, 85, pp.473-476 (1985)
    [32] J. Alkebro, S. Begin-Colin, A. Mocellin, and R. Warren, “Mechanical Alloying of Alumina-yttria Powder Mixtures,” Journal of the European Ceramic Society, 20, pp.2169-2174 (2000)
    [33] H. Yamane, M. Omori, and T. Hirai, “Thermogravimetry and Rietveld Analysis for the High-temperature X-ray Powder Diffraction Pattern of Y4Al2O9,” Journal of Materials Science Letter, 14, pp.470-473 (1995)
    [34] R. Diehl, and G. Brandt, “Crystal Structure Refinement of YAlO3, a Promising Laser Material,” Material Research Bulletin, 10, pp.85-90 (1975)
    [35] Y. Zhydachevskii, A. Durygin, V. Drozd, A. Suchocki, D. Sugak, and J. Wrobel, “Structural and Spectroscopic Properties of Mn-doped YAlO3 Ceramics,” Journal of Physics: Condensed Matter, 20, 095204, pp.1-8 (2008)
    [36] J. S. Abell, I. R. Harris, B. Cocknayne, and B. Lent, “An Investigation of Phase Stability in the Y2O3-Al2O3 System,” Journal of Materials Science, 9, pp.527-537 (1974).
    [37] H. B. Yang, Y. Lin, J. F. Zhu, and F. Wang, “Low-temperature Sintering and Microwave Dielectric Properties of Ca2Zn4Ti15O36 Ceramics,” Journal of Physics and Chemistry of Solids, 70, pp.55–58 (2009)
    [38] K. W. Kang, H. T. Kim, M. Lanagan, and T. Shrout, “Low-temperature Sintering and Microwave Dielectric Properties of CaTi1-x(Fe0.5Nb0.5)xO3 Ceramics with B2O3 Addition,” Materials Research Bulletin, 41, pp.1385–1391 (2006)
    [39] I. C. Ho, “Semiconducting Barium Titanate Ceramics Prepared by Boron-Containing Liquid-Phase Sintering,” Journal of the American Ceramic Society, 77, pp.829-32 (1994).
    [40] K. H. Yoon, M. S. Park, J. Y. Cho, and E. S. Kim, “Effect of B2O3–Li2O on Microwave Dielectric Properties of (Ca0.275Sm0.4Li0.25)TiO3 Ceramics,” Journal of the European Ceramic Society, 23, pp.2423–2427 (2003)
    [41] B. Yuksel, S. Kirtay, T. O. Ozkan, E. Acikalin, and H. Erkalfa, “The Effect of B2O3 Addition to the Microstructure and Magnetic Properties of Ni0.4Zn0.6Fe2O4 Ferrite,” Journal of Magnetism and Magnetic Materials, 320, pp.714–718 (2008)
    [42] J. Fan, and F. R. Sale, “The Microstructures, Magnetic Properties and Impedance Analysis of Mn-Zn Ferrites Doped with B2O3,” Journal of the European Ceramic Society, 20, pp.2743-2751 (2000)
    [43] J. Carda, M. A. Tena, G. Monros, V. Esteve, M. M. Reventos, and J. M. Amigo, “ A Rietveld Study of the Cation Substitution Between Uvarovite and Yttrium-aluminum Synthetic Garnets, Obtained by Sol-gel Method,” Crystal Research and Technology, 29, pp.387-391 (1994)
    [44] J. M. Yoon, J. A. Lee, J. H. Lee, J. J. Kim, and S. H. Cho, “Sintering Behavior and Microwave Dielectric Characteristics of BaO-Sm2O3-4TiO2 Ceramics with B2O3 and BaB2O4 addition,” Journal of European Ceramic Society, 26, pp.2129-2133 (2006)
    [45] K.P. Surendran, P. Mohanan, and M.T. Sebastian, “The Effect of Glass Additives on the Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3 Ceramics,” Journal of Solid State Chemistry, 177, pp.4031–4046 (2004)
    [46] C. L. Huang, J. J. Wang, B. J. Li, and W. C. Lee, “Effect of B2O3 Additives on Sintering and Microwave Dielectric Behaviors of 0.66Ca(Mg1/3Nb2/3)O3–0.34CaTiO3 Ceramics,” Journal of Alloys and Compounds, 461, pp.440–446 (2008)
    [47] C. L. Huang, and C. F. Tseng, “Characteristics of High-Q Microwave Dielectric Ceramics Nd(Co1/2Ti1/2)O3 With CuO Addition,” Journal of the American Ceramic Society, 90, pp.2409–2414 (2007)
    [48] W. S. Kim, T. H. Hong, E. S. Kim, and K. H. Yoon, “Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives,” Japanese Journal Applied Physics, 37, pp.5367 (1998)
    [49] N. Ichinose, and T. Shimada, “Effect of Grain Size and Secondary Phase on Microwave Dielectric Properties of Ba(Mg1/3Ta2/3)O3 and Ba([Mg,Zn]1/3Ta2/3)O3 Systems,” Journal of the European Ceramic Society, 26, pp.1755-1759 (2006)
    [50] C. L. Huang, and Y. C. Chen, “Influence of V2O5 Additions to NdAlO3 Ceramics on Sintering Temperature and Microwave Dielectric Properties,” Journal of the European Ceramic Society, 23, pp.167–173 (2003)
    [51] C. S. Hsu, and C. L. Huang, “Effect of CuO Additive on Sintering and Microwave Dielectric Behavior of LaAlO3 Ceramics,” Materials Research Bulletin, 36, pp.1939–1947 (2001)
    [52] 李榮盛, “NdAlO3 陶瓷介電特性改善及微波元件之應用”, 國立成功大學電機工程研究所碩士論文(2005)
    [53] I. T. Kim, Y. H. Kim, and S. J. Chung, “Order-disorder Transition and Microwave Dielectric Properties of Ba(Ni1/3Nb2/3)O3 Ceramics,” Japanese Journal Applied Physics, 34, pp.4096-4103 (1995)
    [54] R. Ranjan, D. Pandey, V. Siruguri, P. S. R. Krishna, and S. K. Paranjpe, “Novel Structural Features and Phase Transition Behavior of (Sr1−xCax)TiO3: I. Neutron Diffraction Study,” Journal of Physics: Condensed Matter, 11, pp.2233–2246 (1999)
    [55] 陳萬兵, 張少偉, 王周福, 王璽堂, 方斌祥“熔鹽合成法製備CaTiO3粉體的研究”武漢科技大學學報(自然科學版) 第30卷第6期 (2007)
    [56] 張智豪, “xLnAlO3-(1-x)CaTiO3系與Zn(Ta,Nb)2O6系高頻介電陶瓷之晶體結構與電性之影響”, 國立成功大學材料科學與工程學系研究所碩士論文(2004)
    [57] R. D. Shannon, and C. T. Prewitt, “Effect Ionic Radii in Oxides and Fluorides,” Acta Crystallographica Section B-Structural Science, 25,
    pp. 925-946 (1969)
    [58] R. C. Kell, A. C. Greenham, and G. C. E. Olds, “High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss,” Journal of The American Ceramic Society, 56, pp.352-354 (1973)
    [59] S. Y. Cho, K. S. Hong, and K. H. Ko, “Mixture-Like Behavior in the Microwave Dielectric Properties of the (1-x)LaAlO3–xSrTiO3 System,” Materials Research Bulletin, 34, pp. 511–516 (1999)

    下載圖示 校內:2010-07-30公開
    校外:2010-07-30公開
    QR CODE