簡易檢索 / 詳目顯示

研究生: 柯智煌
Ke, Zhi-Haung
論文名稱: 黎曼曲面的曲率問題
Curvature Problems for Riemannian Surfaces
指導教授: 劉珈銘
Liou, Jia-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 21
中文關鍵詞: 卡茨旦-華納方程平均場方程高斯曲率高斯-博內定理
外文關鍵詞: Kazdan-Warner Equation, Mean Field Equation, Gaussian Curvature, Gauss-Bonnet Theorem
相關次數: 點閱:186下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據高斯-博內定理,我們可以導出符號條件。這裡有一個很自然的問題:符號條件的逆敘述是否正確?在這篇論文中,我們將導出平均場方程,並且討論當歐拉示性數為0時,在黎曼曲面上的曲率問題。

    According the Gauss-Bonnet theorem, we can derive the sign conditions. There is a natural question: is the converse of the sign conditions true? In this thesis, we shall derive the mean field equation and discuss the curvaure problems on a Riemannian surfaces when the Euler characteristic is 0.

    1 Introduction 1 1.1 Motivation 1 1.2 Notations 3 2 Curvature Functions for Compact 2-Manifolds 4 2.1 Mean Field Equations 4 2.2 Some Inequalities 9 2.3 Curvature of Compact 2-Manifolds with χ(M )=0 15 References 19

    [1] J. Bourguignon, J. Ezin, Scalar Curvature functions in a class of metrics and conformal transformations, Transactions of the American Mathematical Society, Vol. 301(1987), pp. 723-736.
    [2] C.-L. Chai, C.-S. Lin, C.-L. Wang, Mean Field Equations, Hyperelliptic Curves and Modular Forms, I. Camb. J. Math. Vol. 3(2015), no. 1-2, pp. 127-274.
    [3] J. L. Kazdan, F. W. Warner, Curvature Functions for Compact 2-Manifolds, Annals of Mathematics, Vol. 99, No. 1(1974), pp. 14-47.
    [4] J. L. Kazdan, F. W. Warner, Scalar Curvature and Conformal Deformation of Riemannian Structure, Journal of Differential Geometry, Vol. 10(1975), pp. 113-134.
    [5] J. L. Kazdan, F. W. Warner, Existence and Conformal Deformation of Metric with Prescribing Gaussian and Scalar Curvature, Annals of Mathematics, Vol. 101, No. 2(1975), pp. 317-331.
    [6] J.-M. F. Liou, Explicit Solutions to the Mean Field Equations on Hyperelliptic Curves of Genus Two, Differential Geometry and its Applications Vol. 56(February 2018), pp. 173-186
    [7] J.-M. F. Liou, C.-C. Liu, An Algebraic Construction of Solutions to the Mean Field Equations on Hyperelliptic Curves and Its Adiabatic Limit, Proc. Amer. Math. Soc., Vol. 146(2018), no. 9, pp. 3693–3707.
    [8] C.-S. Lin, C.-L. Wang, Elliptic Functions, Green Functions and the Mean Field Equations on Tori. Ann. of Math. (2) Vol. 172(2010), no. 2, pp. 911-954.
    [9] C.-S. Lin, C.-L. Wang, A Function Theoretic View of the Mean Field Equations on Tori, Recent advances in geometric analysis, pp. 173-193, Adv. Lect. Math. (ALM), 11, Int.
    Press, Somerville, MA, 2010.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE