| 研究生: |
黃閔義 Huang, Min-Yi |
|---|---|
| 論文名稱: |
以分子動力學方法模擬在溫度與尺寸變異下的單壁奈米碳管楊氏係數之研究 Theoretical variations in the Young's modulus of single-walled carbon nanotubes with tube radius and temperature |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 單層奈米碳管 、楊氏係數 |
| 外文關鍵詞: | SWCNT, Young's modulus |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以分子動力學模擬奈米碳管的熱噪音行為,並視奈米碳管為一端點固定的懸臂梁系統。分別對長度溫度及奈米碳管半徑的因子,進行研究,以熱噪音振幅的標準差來估算奈米碳管的楊氏系數值。從數值結果的分析中,可以發現奈米碳管的楊氏系數值與長度因子無關,但是隨著半徑的增加其楊氏系數值會隨之下降,直到管徑較大時楊氏系數值是接近平面的石墨層,石墨層可視為半徑無限大的奈米碳管。結果中也顯示出楊氏系數變化與溫度之間的關系,當溫度低於1100K時,楊氏系數值與溫度無關,溫度高於1100K時,楊氏系數值會突然下降。
This study uses molecular dynamics simulations to investigate the intrinsic thermal vibrations of a single-walled carbon nanotube (SWNT) modeled as a clamped cantilever. Using an elastic model defined in terms of the tube length, the tube radius and the tube temperature, the standard deviation of the vibrational amplitude of the tube’s free end is calculated and the Young’s modulus of the SWNT evaluated. The numerical results reveal that the value of the Young’s modulus is independent of the tube length, but decreases with increasing tube radius. At large tube radii, the Young’s modulus value approaches the in-plane modulus of graphene, which can be regarded as an SWNT of infinitely large radius. The results also indicate that the Young’s modulus is insensitive to changes in the tube temperature at temperatures of less than approximately 1100K, but decreases significantly at higher temperatures.
參考文獻:
[1]. HW Kroto, JR Heath, SC O`Brien, RF Curl, and RE Smalley, Nature (London), 318, 162, (1985).
[2]. S. Iijima, “HELICAL MICROTUBULES OF GRAPHITIC CARBON ”Nature, 354, 56, (1991).
[3]. Eto H “Interdisciplinary information input and output of a nano-technology project” SCIENTOMETRICS 58 (1), 5 (2003).
[4]. Bohm MC, Schulte J, Schlogl R “An ab initio study of the C-60particle-hole pair C-60(12+) and C-60(12-)”Z NATURFORSCH A 52 (4),331(1997)
[5]. Coffman FL, Cao R, Pianetta PA, et al. “Near-edge x-ray absorption of carbon materials for determining bond hybridization In mixed sp2/sp3 bonded materials”APPL PHYS LETT 69 (4),568(1996).
[6]. H.W.KROTO, J.R.Heath, S.C.O’Brien, R.F. Smally,“C60:Buckminster Fullerene”, Nature,318,162(1985)
[7]. Achiba Y, Fowler PW, Mitchell D, et al. “Structural predictions for the C-116 molecule”J PHYS CHEM A 102 (34): 6835(1998).
[8]. S. lijima, Helical “Microtubeles of Graphitic carbon” Nature 354 (1991)
[9]. Rice University:Rick Smalley's Group Home Page-Image Gallery
[10]. S. Iijima, T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-nm Diameter” , Nature, 363,603 (1993)
[11]. Ning JW, Zhang JJ, Pan YB, et al. “Fabrication and thermal property of carbon nanotube/SiO2 composites” J MATER SCI LETT 22 (14),1019(2003).
[12]. Chen P, Zhang HB, Lin GD, et al. “Studies on structure and property of carbon-nanotubes formed catalytically from decomposition of CH4 or CO”CHEM J CHINESE U 19 (5), 765(1998).
[13]. ”Carbon nanotubes synthesis , structure, properties, and applications”, M.S.Dresselhaus, G.Dresselhaus, Ph.Avouris
[14]. T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐” Structure and electronic properties of carbon nanotubes ”J. Phys. Chem. B, 104, 2794(2000).
[15]. S Amelinckx et. al. Electron diffraction and microscopy of nanotubes﹐pp-1475~1477
[16]. M. S. dresselhaus﹐J. Mater. Res., 13﹐2355 (1998)
[17]. H. W. Kroto﹐J. R. Heath﹐S﹒C﹒O'Brien﹐R﹒F﹒Curl﹐R﹒E﹒Smalley﹐Nature, 318, 162 (1985)
[18]. S. Iijima﹐T. Ichihashi﹐” PENTAGONS, HEPTAGONS AND NEGATIVE CURVATURE IN GRAPHITE MICROTUBULE GROWTH” Nature﹐356﹐776(1992)
[19]. O. Zhou, R. M. Fleming, D W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum, Science, 263 pp.1774 (1994)
[20]. S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J.Van Landuyt, Science 267, pp.1334 (1995)
[21]. H. Dai, E.W. Wong, and C. M. Lieber, Science 272, pp.523 (1996)
[22]. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 382, pp.54 (1996)
[23]. “Physical Properties of Carbon Nanotubes” UNIVERSITY OF ELECTRO-COMMINUCATIONS, TOKYO G DRESSELHAUS & MS DRESSELHAUS
[24]. Yokomichi H, Matoba M, Sakima H, et al. “Synthesis of carbon nanotubes by arc discharge in CF4 gas atmosphere”JPN J APPL PHYS 1 37 (12A): 6492-6496 DEC 1998
[25]. Ajayan PM, Redlich P, Ruhle M “Balance of graphite deposition and multishell carbon nanotube growth in the carbon arc discharge”J MATER RES 12 (1): 244-252 JAN 1997
[26]. Zhao XL, Okazaki T, Kasuya A, et al. “Optical emission spectra during carbon nanotube production by arc discharge in H-2, CH4 or He gas”JPN J APPL PHYS 1 38 (10): 6014-6016 OCT 1999
[27]. Shi ZJ, Lian YF, Liao FH, et al. “Large scale synthesis of single-wall carbon nanotubes by arc-discharge method”J PHYS CHEM SOLIDS 61(7): 1031-1036 JUL 2000
[28]. Osvath Z, Koos AA, Horvath ZE, et al. “STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc discharge method”MAT SCI ENG C-BIO S 23 (4): 561-564 JUN 10 2003
[29]. Zhu HW, Jiang B, Xu CL, et al. “Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique”J PHYS CHEM B 107 (27): 6514-6518 JUL 10 2003
[30]. Sakakibara Y, Tatsuura S, Kataura H, et al. “Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method” JPN J APPL PHYS 2 42 (5A): L494-L496 MAY 1 2003
[31]. Hirahara K, Suenaga K, Bandow S, et al. “Boron-catalyzed multi-walled carbon nanotube growth with the reduced number of layers by laser ablation” CHEM PHYS LETT 324 (1-3): 224-230 JUN 30 2000
[32]. Morishita K, Takarada T “Scanning electron microscope observation of the purification behaviour of carbon nanotubes”J MATER SCI 34 (6): 1169-1174 MAR 15 1999
[33]. Yudasaka M, Kikuchi R, Ohki Y, et al. “Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition” CARBON 35 (2): 195-201 1997
[34]. Cheung CL, Hafner JH, Lieber CM “Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging”P NATL ACAD SCI USA 97 (8): 3809-3813 APR 11 2000
[35]. Araki H, Kajii H, Yoshino K “Effects of substrate materials on growth of carbon nanotubes by chemical vapor deposition using metal-phthalocyanines” JPN J APPL PHYS 2 38 (11B): L1351-L1353 NOV 15 1999
[36]. Sinnott SB, Andrews R, Qian D, et al. “Model of carbon nanotube growth through chemical vapor deposition”CHEM PHYS LETT 315 (1-2): 25-30 DEC 17 1999
[37]. Han JH, Moon BS, Yang WS, et al. “Growth characteristics of carbon nanotubes by plasma enhanced hot filament chemical vapor deposition”SURF COAT TECH 131 (1-3): 93-97 SEP 1 2000
[38]. Ikuno T, Takahashi S, Kamada K, et al. “Influence of the plasma condition on the morphology of vertically aligned carbon nanotube films grown by RF plasma chemical vapor deposition”SURF REV LETT 10 (4): 611-615 AUG 2003
[39]. M. J. Yacaman﹐M. M. Yoshida﹐L. Rendon﹐J. G. Saniesteban﹐” Catalytic growth of carbon microtubules with fullerene structure”Appl. Phys. Lett. 1993, 62, 202
[40]. C. journet et. al."Production of carbon nanotubes"﹐Appl. Phys. 1998, A 67﹐pp-1~9
[41]. L. C. Qin et. al."Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition"﹐ Appl. Phys. Lett. 1998, vol. 72﹐pp-3437_3439
[42]. Matsushima M, Araki H, Kamide K, et al.“Field emission from bamboo-like multiwalled carbon nanotube arrays enhanced by mild oxidation” JPN J APPL PHYS 2 42 (8B): L1036-L1038 AUG 15 2003
[43]. She JC, Xu NS, Deng SZ, et al.“Vacuum breakdown of carbon-nanotube field emitters on a silicon tip”APPL PHYS LETT 83 (13): 2671-2673 SEP 29 2003
[44]. Yu K, Zhu Z, Li Q, et al.“Electronic properties and field emission of carbon nanotube films treated by hydrogen plasma”APPL PHYS A-MATER 77 (6): 811-817 NOV 2003
[45]. Kim U, Aslam DM“Field emission electroluminescence on diamond and carbon nanotube films”J VAC SCI TECHNOL B 21 (4): 1291-1296 JUL-AUG 2003
[46]. Huang JH, Chuang CC, Tsai CH, et al.“Excellent field emission from carbon nanotubes grown by microwave-heated chemical vapor deposition” J VAC SCI TECHNOL B 21 (4): 1655-1659 JUL-AUG 2003
[47]. Poa CHP, Smith RC, Silva SRP, et al.“Field emission from nonaligned carbon nanotube-polymer matrix cathodes”J VAC SCI TECHNOL B 21 (4): 1715-1719 JUL-AUG 2003
[48]. Zhao ZG, Tong Y, Liu C, et al.“Effect of geometrical parameters on the field-emission properties of single-walled carbon nanotube ropes”J MATER RES 18 (9): 2188-2193 SEP 2003
[49]. Lee CH, Kang KT, Park KS, et al. “The nano-memory devices of a single wall and peapod structural carbon nanotube field effect transistor”JPN JAPPL PHYS 1 42 (8): 5392-5394 AUG 2003
[50]. Anon “Institute seeks to speed carbon nanotube transistor use with first test-method standard”MICRO 21 (7): 26-+ AUG-SEP 2003
[51]. Matsumoto K, Kinoshita S, Gotoh Y, et al. “Single-electron transistor with ultra-high Coulomb energy of 5000 K using position controlled grown carbon nanotube as channel”JPN J APPL PHYS 1 42 (4B):2415-2418 APR 2003
[52]. Nihey F, Hongo H, Yudasaka M, et al. “A top-gate carbon-nanotube field-effect transistor with a titanium-dioxide insulator”JPN J APPL PHYS 2 41 (10A): L1049-L1051 OCT 1 2002
[53]. Eliseev AA “Carbon-nanotube transistor arrays used for fabrication of multistage complementary logic devices and ring oscillators”MRS BULL 27 (10): 737-738 OCT 2002
[54]. Javey A, Wang Q, Ural A, et al. “Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators”NANO LETT 2 (9): 929-932 SEP 2002
[55]. Thelander C, Magnusson MH, Deppert K, et al. “Gold nanoparticle single-electron transistor with carbon nanotube leads”APPL PHYS LETT 79 (13): 2106-2108 SEP 24 2001
[56]. Chopra S, McGuire K, Gothard N, et al. “Selective gas detection using a carbon nanotube sensor”APPLIED PHYSICS LETTERS 83 (11): 2280-2282 SEP 15 2003
[57]. Li J, Lu YJ, Ye Q, et al. “Carbon nanotube sensors for gas and organic vapor detection"NANO LETTERS 3 (7): 929-933 JUL 2003
[58]. Wienecke M, Bunescu MC, Pietrzak M, et al. “PTFE membrane electrodes with increased sensitivity for gas sensor applications”SYNTHETIC METALS 138 (1-2): 165-171 JUN 2 2003
[59]. Peng S, Cho KJ “Ab initio study of doped carbon nanotube sensors” NANO LETT 3 (4): 513-517 APR 2003
[60]. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
[61]. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76, 2511 (1996).
[62]. D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev. B 45, 12592 (1992).
[63]. C. F. Cornwell and L. T. Wille, Solid State Commun. 101, 555 (1997).
[64]. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80, 4502 (1998).
[65]. D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejon, Phys. Rev. B 59, 12678 (1999).
[66]. G. Van Lier, C. Van Alsenoy, V. Van Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).
[67]. Z. Peralta-Inga, S. Boyd, J. S. Murray, C. J. O’Connor, and P. Politzer, Struct. Chem. 14, 431 (2003).
[68]. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
[69]. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Phys. Rev. B 58, 14013 (1998).
[70]. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
[71]. T. W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C. S. Jayanthi, M. Tang, and S.-Y. Wu, Nature 405, 769 (2000).
[72]. O. Lourie and H.D. Wagner, J. Mater. Res. 13, 2418 (1998).
[73]. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999).
[74]. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 3803 (1999).
[75]. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
[76]. B. Babic, J. Furer, S. Sahoo, Sh. Farhangfar, and C. Schonenberger, Nano Lett. 3, 1577 (2003).
[77]. C. Li and T.-W. Chou, Phys. Rev. B 68, 073405 (2003).
[78]. C. Li and T.-W. Chou, Appl. Phys. Lett. 84, 121 (2004).
[79]. J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics” , J. Chem. Phys., Vol. 18, 817-829, 1950.
[80]. J. Tersoff, “New empirical model for the structural properties of silicon”, Phys. Rev. Lett., Vol. 56, 632 , 1986.
[81]. J. Tersoff, “New empirical approach for the structure and energy of covalent systems”,Phys. Rev. B, Vol. 37, 6991, 1988.
[82]. J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties”,Phys. Rev. B, Vol. 38, 9902, 1988.
[83]. J. Tersoff, “Modeling solid-state chemistry:Interatomic potentials for multicomponent systems”,Phys. Rev. B, Vol. 39, 5566, 1989.
[84]. G. C. Abell, “Empirical chemical pseudopotential theory of molecular and metallic bonding”, Phys. Rev. B, Vol. 31, 6184, 1985.
[85]. D. C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, 1997.
[86]. J. M. Goodfellow et al., “Molecular dynamics”, CRC Press, Boston, 1990.
[87]. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids”, Oxford, London, 1991.
[88]. D. Frenkel and B. Smit, “Understanding Molecular Simulation”, Academic Press, San Diego, 1996.
[89]. D. W. Heermann, “Computer Simulation Method”, Springer-Verlag, Berlin, 1990.
[90]. D. C. Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London, 1997.
[91]. J. M. Goodfellow et al., “Molecular dynamics”, CRC Press, Boston, 1990.
[92]. M. P. Allen and D. J. Tildesley, “Computer Simulation of Liquids”, Oxford, London, 1991.
[93]. D. Frenkel and B. Smit, “Understanding Molecular Simulation”, Academic Press, San Diego, 1996.