簡易檢索 / 詳目顯示

研究生: 水毅龍
Stefan Popesku
論文名稱: Beta型低溫式史特靈冷凍機之實驗及數值研究
Experimental and Numerical Study of Beta-Type Stirling Cryocooler
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 76
中文關鍵詞: Beta型式史特靈冷凍機式史特靈冷凍機靈冷凍機
外文關鍵詞: Cryogenics, Stirling cryocooler, Stirling machines, Beta-type Stilring cryocooler
相關次數: 點閱:48下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The present study entails the development and performance analysis of a beta-type Stirling cryocooler. The aim was to determine the optimal parameters for upscaling and facilitate practical applications. Utilizing a thermodynamic model to ascertain geometrical parameters, a prototype was manufactured and rigorously tested under varying conditions, including pressure, speed, and different regenerator mesh types. The peak performance, achieved with Mesh 40 at 850 rpm and a 1.5 bar charge pressure (Helium gas), resulted in a temperature of 147.9 K with 400 W input power. At the same time, in heat load cases, Mesh 60 outperformed with 186.7 K and 0.4% COP and 1 W cooling power at comparable working conditions. Whereas it is evident that porosity is an essential determinant of the regenerator's effectiveness, factors like viscous and inertial resistances and permeability may be more dominant factors. Henceforth, this research provides critical insights for future enhancements of cryocooler systems.

    ABSTRACT II ACKNOWLEDGMENTS III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII NOMENCLATURE X CHAPTER 1 INTRODUCTION 1 1.1 History and Trends 1 1.2 Literature Review 3 1.3 The Objective of the Present Study 7 CHAPTER 2 PROTOTYPING AND TESTING 8 2.1 Prototyping and Manufacturing 8 2.2 Data Acquisition 14 2.3 Experimental Conditions 19 2.4 Experimental Measurements 23 2.4.1 Regenerator Porosity 23 2.4.2 Mechanical Power 23 2.4.3 Coefficient of performance (COP) 24 CHAPTER 3 NUMERICAL MODELING 25 3.1 Model Description 25 3.2 Mechanism Kinematics 27 3.3 Volume, Mass, and Pressure Calculations 28 3.4 Regenerator Flow Modeling 30 3.5 Temperature Calculation 32 CHAPTER 4 RESULTS AND DISCUSSION 36 4.1 Results 36 4.1.1 Zero Heat Load Testing 36 4.1.2 Heat-load Testing Baseline Case 46 4.1.3 Heat-load for Regenerator Variation Cases 50 4.1.4 Numerical Results 55 4.1.5 Validation 60 4.2 Discussion 64 CHAPTER 5 CONCLUSION 73 REFERENCES 74

    [1] R. Ross and R. Boyle, “An Overview of NASA Space Cryocryocooler Programs-2006”.
    [2] G. Walker, Cryocryocoolers: Part 1: Fundamentals. Springer, 2014.
    [3] C. F. Song, Y. Kitamura, and S. H. Li, “Evaluation of Stirling cryocooler system for cryogenic CO2 capture,” Applied Energy, vol. 98, pp. 491–501, Oct. 2012, doi: 10.1016/j.apenergy.2012.04.013.
    [4] D. M. Berchowitz, “STIRLING COOLERS FOR SOLAR REFRIGERATORS”.
    [5] S. Langdon-Arms, M. Gschwendtner, and M. Neumaier, “A novel solar-powered liquid piston Stirling refrigerator,” Applied Energy, vol. 229, pp. 603–613, Nov. 2018, doi: 10.1016/j.apenergy.2018.08.040.
    [6] H. Hachem, R. Gheith, F. Aloui, and S. Ben Nasrallah, “Optimization of an air-filled Beta type Stirling refrigerator,” International Journal of Refrigeration, vol. 76, pp. 296–312, Apr. 2017, doi: 10.1016/j.ijrefrig.2017.02.019.
    [7] S. V. Riabzev, A. M. Veprik, H. S. Vilenchik, N. Pundak, and E. Castiel, “Vibration-free stirling cryocooler for high definition microscopy,” Cryogenics, vol. 49, no. 12, pp. 707–713, Dec. 2009, doi: 10.1016/j.cryogenics.2009.08.002.
    [8] A. Filis, Z. B. Haim, N. Pundak, and R. Broyde, “Microminiature rotary Stirling cryocooler for compact, lightweight, and low-power thermal imaging systems,” in Infrared Technology and Applications XXXV, SPIE, May 2009, pp. 421–429. doi: 10.1117/12.818427.
    [9] J.F. Sun, Y. Kitamura, and T. Satake, “Application of Stirling cryocooler to food processing: Feasibility study on butter churning,” Journal of Food Engineering, vol. 84, no. 1, pp. 21–27, Jan. 2008, doi: 10.1016/j.jfoodeng.2007.04.020.
    [10] M. Hendrickson, T. Podlesak, J. Huth, H. Brandhorst, and F. Rose, “Stirling Engines for Military Applications,” in 3rd International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2005-5519.
    [11] G. Claude, Liquid Air, Oxygen, Nitrogen. P. Blakiston’s Son & Company, 1913.
    [12] “Cryocryocooler Market Size & Share Analysis - Industry Research Report - Growth Trends.” https://www.mordorintelligence.com/industry-reports/cryocooler-market (accessed Jun. 22, 2023).
    [13] M. R. F. https://www.marketresearchfuture.com, “Cryocryocooler Market Size, Share and Industry Trends 2032 | MRFR.” https://www.marketresearchfuture.com/reports/cryocooler-market-11683 (accessed Jun. 22, 2023).
    [14] T. M. Kochenburger, S. Grohmann, and L. R. Oellrich, “Evaluation of a Two-stage Mixed Refrigerant Cascade for HTS Cooling Below 60 K,” Physics Procedia, vol. 67, pp. 227–232, Jan. 2015, doi: 10.1016/j.phpro.2015.06.039.
    [15] A. Chen, X. Liu, F. Xu, J. Cao, and L. Li, “Design of the Cryogenic System for a 400 kW Experimental HTS Synchronous Motor,” IEEE Transactions on Applied Superconductivity, vol. 20, no. 3, pp. 2062–2065, Jun. 2010, doi: 10.1109/TASC.2009.2039206.
    [16] X. Wang et al., “A high efficiency hybrid stirling-pulse tube cryocooler,” AIP Advances, vol. 5, no. 3, p. 037127, Mar. 2015, doi: 10.1063/1.4915900.
    [17] M. Dietrich, L. W. Yang, and G. Thummes, “High-power Stirling-type pulse tube cryocooler: Observation and reduction of regenerator temperature-inhomogeneities,” Cryogenics, vol. 47, no. 5, pp. 306–314, May 2007, doi: 10.1016/j.cryogenics.2007.03.009.
    [18] Z. Yang, S. Liu, Z. Li, Z. Jiang, and C. Dong, “Application of machine learning techniques in operating parameters prediction of Stirling cryocooler,” Cryogenics, vol. 113, p. 103213, Jan. 2021, doi: 10.1016/j.cryogenics.2020.103213.
    [19] X. Qiao et al., “Numerical study on a two-stage large cooling capacity stirling cryocooler working at 20 K,” Cryogenics, vol. 118, p. 103334, Sep. 2021, doi: 10.1016/j.cryogenics.2021.103334.
    [20] W. Wu, X. Cui, S. Liu, Z. Jiang, J. Song, and Y. Wu, “Cooling performance improvement of a two-stage pulse tube cryocooler with Er-plated screen as regenerator material,” International Journal of Refrigeration, vol. 131, pp. 615–622, Nov. 2021, doi: 10.1016/j.ijrefrig.2021.08.007.
    [21] W. Bo, C. Yijun, W. Haoren, Z. Qinyu, L. Dongli, and G. Zhihua, “A miniature Stirling cryocooler operating above 100 Hz down to liquid nitrogen temperature,” Applied Thermal Engineering, vol. 186, p. 116524, Mar. 2021, doi: 10.1016/j.applthermaleng.2020.116524.
    [22] S. Zhu, G. Yu, X. Li, W. Dai, and E. Luo, “Parametric study of a free-piston Stirling cryocooler capable of providing 350 W cooling power at 80 K,” Applied Thermal Engineering, vol. 174, p. 115101, Jun. 2020, doi: 10.1016/j.applthermaleng.2020.115101.
    [23] Y. Chao et al., “A two-stage thermally-coupled pulse tube cryocooler working at 35 K for space application,” Acta Astronautica, vol. 191, pp. 193–203, Feb. 2022, doi: 10.1016/j.actaastro.2021.11.007.
    [24] “STIRLING-TYPE PULSE TUBE CRYOCOOLER WITH 1KW OF REFRIGERATION AT 77K | AIP Conference Proceedings | AIP Publishing.” https://pubs.aip.org/aip/acp/article/985/1/42/990654/STIRLING-TYPE-PULSE-TUBE-CRYOCOOLER-WITH-1KW-OF (accessed Jun. 25, 2023).
    [25] D. Sun, X. Qiao, D. Yang, and Q. Shen, “Experimental study on a two-stage large cooling capacity stirling cryocooler working below 30 K,” Cryogenics, vol. 129, p. 103619, Jan. 2023, doi: 10.1016/j.cryogenics.2022.103619.
    [26] X. Q. Zhi, L. Han, M. Dietrich, Z. H. Gan, L. M. Qiu, and G. Thummes, “A three-stage Stirling pulse tube cryocooler reached 4.26K with He-4 working fluid,” Cryogenics, vol. 58, pp. 93–96, Dec. 2013, doi: 10.1016/j.cryogenics.2013.09.009.
    [27] H. Dang et al., “Theoretical and experimental investigations on the three-stage Stirling-type pulse tube cryocooler using cryogenic phase-shifting approach and mixed regenerator matrices,” Cryogenics, vol. 93, pp. 7–16, Jul. 2018, doi: 10.1016/j.cryogenics.2018.05.005.
    [28] H. Dang et al., “Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part B: Experimental verifications,” Cryogenics, vol. 105, p. 103015, Jan. 2020, doi: 10.1016/j.cryogenics.2019.103015.
    [29] H. Dang et al., “Investigations on a 2.2 K five-stage stirling-type pulse tube cryocooler. Part B: Experimental verifications,” Cryogenics, vol. 129, p. 103631, Jan. 2023, doi: 10.1016/j.cryogenics.2023.103631.
    [30] R. Li and L. Grosu, “Parameter effect analysis for a Stirling cryocooler,” International Journal of Refrigeration, vol. 80, pp. 92–105, Aug. 2017, doi: 10.1016/j.ijrefrig.2017.05.006.
    [31] C.-H. Cheng, C.-Y. Huang, and H.-S. Yang, “Development of a 90-K beta type Stirling cryocooler with rhombic drive mechanism,” International Journal of Refrigeration, vol. 98, pp. 388–398, Feb. 2019, doi: 10.1016/j.ijrefrig.2018.11.027.
    [32] Z.-Y. Huang, "Design and Theoretical Analysis of a Stirling Cooler," M.S. thesis, Dept. of Aeronaut. & Astronaut., National Cheng Kung University, Tainan, 2012.
    [33] C.-H. Cheng and D.-T. Phung, “Numerical Optimization of the β-Type Stirling Engine performance Using the Variable-Step Simplified Conjugate Gradient Method,” Energies, vol. 14, no. 23, Art. no. 23, Jan. 2021, doi: 10.3390/en14237835.
    [34] “Release R2022b Products and Services.” https://www.mathworks.com/products/new_products/r2022b-transition.html (accessed Jul. 09, 2023).
    [35] A. A. Boroujerdi and M. Esmaeili, “Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators,” Alexandria Engineering Journal, vol. 54, no. 4, pp. 787–794, Dec. 2015, doi: 10.1016/j.aej.2015.06.001.
    [36] J. M. Daoud and D. Friedrich, “A new duplex Stirling engine concept for solar-powered cooling,” International Journal of Energy Research, vol. 44, no. 7, pp. 6002–6014, 2020, doi: 10.1002/er.5190.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE