簡易檢索 / 詳目顯示

研究生: 李盈達
Lee, Ying-Da
論文名稱: 高週波電漿中丙烯腈分解機制之探討
Reaction Mechanisms of Acrylonitrile Decomposition in an RF Plasma System
指導教授: 李文智
Lee, Wen-Jhy
謝連德
Hsieh, Lien- Te
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 158
中文關鍵詞: 敏感度分析反應機制丙烯腈電漿
外文關鍵詞: Sensitivity analysis, RF plasma system, Acrylonitrile, Reaction mechanism
相關次數: 點閱:83下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用高週波電漿系統處理丙烯腈(ACN),分別於三種系統( ACN/Ar、ACN/O2/Ar及ACN/H2/Ar )中,探討各個操作參數( 輸入功率、O2/ACN比例、H2/ACN比例及ACN進流濃度 )對ACN分解率( ηACN )及產物生成莫耳濃度之影響,並嘗試由反應之生成物,推演ACN於電漿系統中之可能反應機制。研究結果顯示,ηACN與輸入功率及O2/ACN比例成正相關,而與H2/ACN比例及ACN進流濃度成負相關,其中以H2/ACN比例為影響分解率之最主要因素。再者,由於ACN/O2/Ar系統中可生成較多強反應性O及OH自由基,因此,
    於ACN/O2/Ar中之ηACN大於ACN/Ar系統者,並遠大於ACN/H2/Ar系統者。
    另一方面,於ACN/Ar系統中,含有較多高激發態之Ar*及電子,因此反應有利於將三個碳分子的ACN分解成較小分子量之碳氫化物(二個碳以下)如CH4、C2H2。而於ACN/O2/Ar系統中,高反應性之OH及O自由基之濃度較多,有利有利於ACN本身與C2H6及C2H2之分解,轉化成含氧之碳氫化物HCHO、CH3CHO、CH3OH、CO及CO2;而當系統O2/ACN比例增加時,HCHO及CH3OH也有被分解成CO 及CO2的趨勢。另外於ACN/H2/Ar系統中,氫氣之添加,相對減少Ar之濃度,由於氫氣之親電性,會吸收系統中之電子,降低激發態Ar*及高能電子之數目,使得ηACN降低。於ACN加氫之反應中,增加進料中氫之濃度,有促進碳氫化合物(例如:C2H2及C2H6)生成之效果。本實驗利用高週波電漿分解ACN,建議最佳操作條件為,添加O2/ACN比值為2.5之氧氣於Ar電漿中,將輸入功率設定在30 watts下,操作壓力為10 Torr,及ACN進流濃度為5%,此時分解效
    率可達99.86 %,而積碳及PAHs含量亦可減至最低,並可使能源消
    耗達最經濟之利用。
    此外,由實驗迴歸方程式之敏感度分析可知,於ACN/O2/Ar電漿環境中,CACN、RO2/ACN及W三種操作變數,對ACN分解率(ηACN)之敏感度重要性依次為:CACN > W > RO2/ACN。對FCO之敏感度重要性依次為:RO2/ACN > W > CACN。對FCO2之敏感度重要性依次為:W > CACN > RO2/ACN。而對FCH3OH之敏感度重要性依次為:W > RO2/ACN > CACN。於ACN/H2/Ar電漿環境中,CACN、RH2/ACN及W三種操作變數,對ACN分解率(ηACN)之敏感度重要性依次為:RH2/ACN > W > CACN。對
    FC2H2之敏感度重要性依次為:RH2/ACN > CACN > W。而對FC2H6之敏感度重要性依次為:W > RH2/ACN > CACN。

    Application of radio-frequency (RF) plasma for the decomposition of Acrylonitrile (ACN) is demonstrated. For these three plasma systems ( ACN/Ar, ACN/O2/Ar and ACN/H2/Ar ), experiments were conducted to elucidate the effects of operational parameters on ACN decomposition fraction (ηACN) and products formation fraction. The operational parameters including input power wattage, O2/ACN ratio, H2/ACN ratio, and ACN feeding concentration were investigated. Furthermore, the possible reaction pathways of decomposing ACN in an RF plasma system were built-up and discussed. The results showed that a ηACN be increased as increase a input power wattage or a O2/ACN ratio, respectly, but a ηACN be decreased with increasing a H2/ACN ratio and a ACN feeding concentration, respectly. For the effect on ηACN, the H2/ACN ratio is the most dominant operational parameter. In addition, there are more significant reactive radicals( O‧and OH‧) in ACN/O2/Ar system than that in ACN/Ar or in ACN/H2/Ar system. Therefore, the ηACN in ACN/O2/Ar
    system is the highest.
    In addition, there are a great amount of highly excited Ar* and electrons in ACN/Ar system. Hence, the reactions are favorable for the decomposition of the ACN ( three carbons ) to lower molecular weight hydrocarbon ( one or two carbons ) , such as CH4 and C2H2. In ACN /O2/Ar system, existing more amount of highly reactive O and OH radicals reacted with ACN itself, C2H2 and CH4 and converted into oxygen contained species, such as HCHO, CH3CHO, CH3OH, CO and CO2. Furthermore, as input power wattage increases, CH3OH and HCHO would be decomposed as CO and CO2. However, in ACN/H2/Ar system, adding hydrogen make Ar concentration decrease relatively. Due that the hydrogen is with high electron affinity, it would absorb electrons and make the number of excited Ar* and electrons decrease in the plasma system. This not only decreased the ηACN but also decreased the formation of lower molecular weight hydrocarbon decrease. In ACN/H2/Ar plasma system, increase the inlet H2/ACN ratio will promote the formation of hydrocarbons (i.e. C2H2 and C2H6) in the effluent. The optimum condition for the decomposition of Acrylonitrile (ACN) by using RF plasma system was suggested as follows: O2/ACN ratio was 2.5, input power wattage was 30 watts, operational pressure was controlled at 10 Torr, total flow gas rate was 100 sccm, and ACN feeding concentration was 5 %; at this condition the ηACN is up to 99.86 %; and the amounts of both soot and PAHs formation were the lowest; This condition will also provide the
    most economical use of energy.
    In ACN/O2/Ar environment, the sensitivity analysis indicated that the signficance of sensitivity for the ACN decomposition fraction, the CO formation fraction, the CO2 formation fraction, and the CH3OH formation fraction were:CACN > W > RO2/ACN;RO2/ACN > W > CACN;W > CACN > RO2/ACN;W > RO2/ACN > CACN, respectively. In ACN/H2/Ar environment, the sensitivity analysis indicated that the signficance of sensitivity for the ACN decomposition fraction, the C2H2 formation fraction, and the C2H6 formation fraction were:RH2/ACN > W > CACN;RH2/ACN > CACN > W;W
    > RH2/ACN > CACN, respectively.

    總目錄 頁次 授權書 I 中文摘要 III 英文摘要 V 致謝VII 總目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2-1 丙烯腈之物理與化學性質 2 2-2 丙烯腈之製造與用途 3 2-2-1 丙烯腈之生產與製造 3 2-2-2 丙烯腈用途及範圍 6 2-3 丙烯腈之環境污染現況及流佈 7 2-3-1 公共飲用水與工業廢水丙烯腈之濃度 7 2-3-2 飲食及魚類中丙烯腈之含量 9 2-3-3 大氣環境中丙烯腈之濃度 9 2-4 丙烯腈之生物毒性及對健康影響 9 2-5 丙烯腈之處理技術 13 2-5-1 熱處理法 14 2-5-1-1單衝擊震動管(Single-Pulse Shock Tube)高溫 熱解處理法 14 2-5-1-2 Pt/γ -Al2O3觸媒焚化處理法 14 2-5-2 生物處理法 16 2-5-2-1 生物降解(Biodegradation)處理法 16 2-5-2-2 生物濾床(Trickle-bed air biofilter, TBAB) 處理法 17 2-5-3 光分解法 18 2-5-3-1 光離子化法 18 2-5-4 文獻中分解丙烯腈所得的產物 19 2-6 丙烯腈分解機制 20 2-6-1單衝擊震動管(Single-Pulse Shock Tube)熱解丙烯腈 20 2-6-2光離子化法分解丙烯腈 22 2-7 電漿理論 24 2-7-1電漿的產生 24 2-7-2電漿種類 25 2-7-3電漿的應用 28 第三章 實驗設備及方法 32 3-1 實驗流程 32 3-2 實驗設備 32 3-2-1氣體進料系統 35 3-2-2混合及定量系統 36 3-2-3高週波產生系統 36 3-2-4反應分解系統 38 3-2-5真空抽氣系統 40 3-2-6 FTIR 掃描分析與資料處理系統 41 3-3 實驗前準備 43 3-4 各種操作參數之選定 43 3-5 實驗方法與步驟 44 3-5-1 實驗方法 44 3-5-2 實驗步驟 45 3-6 物種之定性與定量 50 3-7 反應器內穩定狀態評估 52 第四章 實驗結果與討論 53 4-1 改變電漿輸入功率 53 4-1-1 輸入功率對ACN分解率之影響 53 4-1-2 輸入功率與碳平衡之關係 55 4-1-3 輸入功率與產物變化之關係 56 4-2 改變氣體進流濃度 63 4-2-1 改變氣體進流濃度對分解率之影響 63 4-2-2 輸入濃度與碳平衡之關係 65 4-2-3 輸入濃度與產物變化之關係 66 4-3 改變O2/ACN及H2/ACN之影響 72 4-3-1改變O2/ACN及H2/ACN對分解率之影響 72 4-3-2改變O2/ACN及H2/ACN對碳平衡之影響 74 4-3-3 O2/ACN及H2/ACN與產物變化之關係 74 4-4 ACN轉化率之探討 80 4-4-1 ACN/Ar電漿環境之ACN產物轉化率 80 4-4-2 ACN/O2/Ar電漿環境之ACN產物轉化率 80 4-4-3 ACN/H2/Ar電漿環境之ACN產物轉化率 85 4-5 ACN反應機制之探討 87 4-6 實驗迴歸方程式與敏感度分析 99 4-6-1 RF電漿分解ACN/O2/Ar氣體之實驗迴歸方程式 99 4-5-4 ACN/H2/Ar電漿實驗迴歸方程式之敏感度分析 108 4-6 固相沉積物之分析 114 第五章 結論與建議 120 5-1 結論 120 5-2 建議 121 參考文獻 122 附錄A 定量校正曲線圖 131 附錄B ACN/Ar、ACN/O2/Ar及ACN/H2/Ar三電漿系統於不同 操作條件下反應產物濃度、碳平衡值及分解率 137 附錄C 數據計算說明 146 附錄D 二十一種PAHs之分子量、化學式及結構式149 附錄E 符號對照表 153 附錄F RF電漿分解ACN經濟效益之探討 156 自述 158

    Abdel-Aziz, A. H.; Abdel-Naim, A. B.; Hamada, F. M.; Ahmed, A. E. “In-vitro Testicular Bioactivation of Acrylonitrile”, Pharmacological Research, Vol. 35, No. 2, pp. 129-134, 1997.
    Acrylonitrile Group 2B ”5. Summary of Data Reported and Evaluation”, http://193.51.164.11/htdocs/monographs/vol71/001-acrylonitrile.html, 2001.
    Balko, B. A.; Zhang, J. and Lee, Y. T. “ Photodissociation of Ethylene at 193 nm ”, Chemical Physics, Vol. 97, pp. 935, 1992.
    Benner, Jr. B. A.; Gordon, G. E. and Stephen, A. W. “Mobile Sources of Atmospheric Polycyclic Aromatic Hydrocarbons: A Roadway Tunnel Study”, Environmental Science and Technology, Vol. 20, No. 10, pp. 1038-1043, 1986.
    Boening, H. V. “Fundamentals of Plasma Chemistry and Technology”, Technomic Publishing Co., Inc., 1988.
    Blank, D. A.; Suits, A. G.; Lee, Y. T.; North, S. W. and Hall, G. E. “ Photodissociation of acrylonitrile at 193nm: A photofragment translational spectroscopy study using synchrotron radiation for product photoionization ” Journal of Chemical Physics, Vol. 108, No. 14, pp. 5784-5794, 1998.
    Blanksby, S. J. and Ellison, G. B., “Bond Dissociation Energies of Organic Molecules” Accounts of Chemical Research, pp. 255-263, 2003
    Byrd, GD.; Fowler, KW.; Hicks, RD.; Lovette, ME.; Borgerding, MF. “Isotope dilution gas chromatography-mass spectrometry in the determination of benzene, toluene, styrene and acrylonitrile in mainstream cigarette smoke”, Journal of Chromatography A, Vol. 503, pp. 359-368, 1990.
    Conacher, HB.; Page, BD.and Ryan, JJ. “Industrial chemical contaminants of foods”, Food Additament Contaminant, Vol. 10, pp. 129 -143, 1993.
    Ellingson, S.B. and Redding, M.B. “Pesticides and inorganics in Arizona's drinking water wells”. Proceedings of the FOCUS Conference of Southwestern Ground Water Issues, National Water Well Association., Dublin, OH., pp.223-247, 1988.
    Flagan, R. C. and Seinfeld J. H.,“Fundamentals of Air Pollution Engineering”, Prentice Hall, New Jersey, 1988.
    Going, J.E. et al. “Environmental monitoring near industrial sites: Acrylonitrile. Midwest Research Institute. Prepared for the U.S. EPA”, Washington, DC. December, 1978.
    Goldenberg, M. and Frenklach, M. “ A Post-Processing Method for Feature Sensitivity Coefficients”, International Journal of Chemical Kinetics, Vol. 27, pp. 1135-1142, 1995.
    Hamada, F. M.; Abdel-Aziz, A. H.; Abd-allah, A. R. and Ahmed, A. E. “Possible Functional Immunotoxicity of Acrylonitrile (VCN)”, Pharmacological Research, Vol. 37, No. 2, pp. 123-129, Feb 1998.
    Hang, W. and Harrison, W. W. “Diffusion, Ionization, and Sampling Processes in the Glow Discharge Source for Mass Spectrometry”, Analytical Chemistry, Vol. 69, No. 24, pp. 4957-4963, 1997.
    Herman, V. and Boenig, Ph. D. “Fundamentals of plasma chemistry and technology“, 1989.
    Hsieh, L. T.; Lee,W. J. and Chen, C. Y. “Decomposition of CH3Cl/CO2 Mixtures by Using an RF Plasma Reactor”, Journal of Aerosol Science, Vol. 28, pp. 519-520, 1998.
    Hsieh, L. T.; Fang, G. C.; Yang, H. H.; Wang, Y. F.; Tsao, M. C. and Liao, W. T. “PAHs Formation in the Deposition in a Methyl tert-Butyl Ether/Ar, a Methyl tert-Butyl Ether/O2/Ar and a Methyl tert-Butyl Ether/H2/Ar RF Plasma Environment”, Plasma Chemistry and Plasma Processing, Vol. 22, No. 4, pp. 639-658, 2002.
    Huheey, J. E. “Inorganic Chemistry: Principles of structure and Reactivity”, University of Maryland, first edition, pp. 691-702. 1974.
    IARC, “ IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. Some monomers, plastics and synthetic elastomers and acrolein”, Vol. 19, pp.73-113, 1979.
    IARC, ”Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide, 17-24 February 1998”, http://193.51.164.11/htdocs/announcements/vol71.htm, 2001.
    Kedderis G.L.; Batra R. and Turner M.J. “Conjugation of Acrylonitrile and 2-Cyanoethylene Oxide with Hepatic Glutathione”, Toxicology and Applied Pharmacology, Vol. 135, No. 1, pp. 9-17, Nov 1995.
    Kessler, L.; Pinget, M.; Aprahamian, M.; Poinsot, D.; Keipes, M. and Damage, C. “Diffusion properties of an artificial membrane used for Langerhans islets encapsulation: interest of an in vitro test”, Transplantation Proceedings, Vol. 24, pp.953-954, 1992.
    Kondakova, LV.; Formina, EI. and Alekseeva, OV. “Composition of volatile thermo-destruction components of automobile brake straps”, Gig. Tr. Prof. Zabol., Vol. 3, pp.18-21, 1990.
    Krill, R.M. and Sonzogni W.C. “Chemical monitoring of Wisconsin's groundwater”, Journal of American Water Works, Vol.78, No.9, pp.70-75, 1986.
    Larkin, D. W.; Caldwell, T. A.; Lobban, L. L. and Mallinson, R. G. “Oxygen pathways and carbon dioxide utilization in methane partial oxidation in ambient temperature electric discharges”, Energy and Fuels, Vol. 12, pp. 740-744, 1998.
    Larson, J. M.; Swihart, M. T. and Girshick, S. L. “Characterization of the near-surface gas-phase chemical environment in atmospheric - pressure plasma chemical vapor deposition of diamond”, Diamond and Related Materials, Vol. 8, pp. 1863-1874, 1999.
    Lee, W. J.; Clcek, B. and Senkan, S. M. “Chemical Structures of Fuel-Rich and Fuel-Lean Flames of CH3Cl/CH4 Mixtures”, Environment Science and Technology, Vol. 27, No. 5, pp. 949-960, 1993.
    Liao, W. T.; Lee, W. J.; Chen, C. Y.; Hsieh, L. T. and Lai, C. C. “Decomposition of ethoxyethane in the cold plasma environment”, Journal of Chemical Technology Biotechnology, Vol. 75, pp. 817-827, 2000.
    Lide, D. R., CRC Handbook of Chemistry and Physics, CRC Press, Inc., 2002.
    Lifshitz, A.; Bidani, M.; Suslensky A. and Tamburu, C. “Pyrolysis of Acrylonitrile at Elevated Temperature. Studies with a Single-Pluse Shock Tube”, Journal of Physical Chemistry, Vol. 93, pp.1369-1373, 1989.
    Lin, K. S.; Wang, H. P.; Lin, C. J. and Juch, C. I. "A process development for gasification of rich husk", Fuel Processing Technology, Vol. 55, pp. 185-192, 1998.
    Lu, C.; Lin, M. R. and Chu, W.C. “Removal of BTEX vapor from waste gases by a trickle-bed biofilter”, Journal of the Air & Waste Management Association, Vol. 50, pp.411-417, 2000a.
    Lu, C.; Lin, M. R. and Lin, J. “Removal of Acrylonitrile Vapor from Waste Gases by a Trickle-bed Air Biofilter”, Bioresource Technology, Vol. 75, pp.35-41, 2000b.
    Lungu, C. P.; Lungu, A. M.; Sakai, Y.; Sugawara, H.; Tabata, M.; Akazawa, M. and Miyamoto, M. “CxFy polymer film deposition in DC and RF fluorinert vapor plasmas”, Vacuum, Vol. 59, pp. 210-219, 2000.
    Manolache, S.; Sarfaty, M. and Denes, F. “RF frequency effects on molecular fragmentation”, Plasma Sources Science Technology, Vol. 9, pp. 37-44, 2000.
    Mostafa, A. M.; Abdel-Naim, A. B.; Abo-Salem, O.; Abdel-Aziz, A. H. and Hamada, M. A. “Renal Metabolism of Acrylonitrile to Cyanide in Vitro Studies”, Pharmacological Research, Vol. 40, No. 2, pp. 195-200, Aug. 1999.
    North, S. W. and Hall, G. E. “The radical photodissociation channel of acrylonitrile”, Chemical Physics Letters, Vol. 263, pp. 148-153, 1996.
    NTP, “National Toxicology Program”, Chemical Health and Safety Database, 1998.
    Parker, S. and Braden, M. “Soft prosthesis materials based on powdered elastomers”, Biomaterials, Vol. 11, pp.482-490, 1990.
    Pavel, R. Jr., Blanka, B., Irena, C. and Radim, J. Š. “Acrylonitrile Exposure: The Effect on p53 and p21WAF1 Protein Levels in The Plasma of Occupationally Exposed Workers and in Vitro in Human Diploid Lung Fibroblasts”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 517, May 27, pp. 239-250, 2002.
    Pavia, D. L.; Lampman, G. M. and Kriz, G. S. “Introduction To Spectroscopy: A Guide for Students of Organic Chemistry”, Saunders College Publishing, second edition, U.S.A., pp. 14-95, 1996.
    Pitz, W. J. and Westbrook, C. K. “Chemical Kinetics of the high pressure oxidation of n-butane and its relation to engine knock”, Combustion and Flame Vol. 63, pp. 113-133, 1986.
    Reddy, R. R.; Ahammed, Y. N.; Gopal, K. R. and Anjanyulu, S., “Bond Dissociation Energy of Astrophysically Important Molecules”, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 61, No. 5, pp. 711-713, 1999.
    Reyes, G. F.; Corbett, D.; Benz, F. W. and Doyle, R. J. “Acrylonitrile Induces Autolysis Bacillus Subtilise”, FEMS Microbiology Letters, Vol. 182, pp. 255-258, 2000.
    Roth, J.R. “Principles, Insitute of Physics Publishing: Bristol and Philadelphia” Industrial Plasma Engineering, Vol. 1, 1995.
    Rubio, R.; Galceran, M. T. and Rauret, G. “ Nitriles and isonitriles as interferents in cyanide determination in polluted water”, Analyst, Vol. 115, pp.959-963, 1990.
    Sandor F. “Atoms, Chemical Bonds and Bond Dissociation Energies”, Lecture Notes in Chemistry 63, 1994.
    Sathiamoorthy, G.; Kalyana, S.; Finney, W. C.; Clark, R. J. and Locke, B. R. “Chemical Reaction Kinetics and Reactor Modeling of NOx Removal in a Pulsed Streamer Corona Discharge Reactor”, Industrial & Engineering Chemistry Research, Vol.38, pp. 1844-1855, 1999.
    Sendt, K.; Ikeda, E.; Bacskay, G. B. and Mackie, J. C. “Ab Initio Quantum Chemical and Experimental (Shock Tube) Studies of the Pyrolysis Kinetics of Acetonitrile”, Journal of Physical Chemistry A, Vol. 103, pp. 1054-1072, 1999.
    Sieck, L. W.; John, T. H. and David, S. G. “Chemical kinetics database and predictive schemes for humid air plasma chemistry. Part I: Positive ion-molecule reactions”, Plasma Chemistry and Plasma Processing, Vol. 20, No. 2, pp. 235-258, 2000.
    Solionova, LG.; Smulevich, VB.; Turbin EV; Krivosheyeva, LV.; Plotnikov, JV. “Carcinogens in rubber production in the Soviet Union”, Scandinavian Journal Work Environmental Health, Vol. 18, pp.120-123, 1992.
    SRI “Directory of Chemical Producers:United Stats of America”, Stanford Research Institute, Menlo Park, CA. 443, 597, 598. pp.624-629, 1992.
    Stenburg, R. L.; von Jehmden, D. J. and Hangebruck, R. P. “Sample Collection Techinques for Combustion Sources Benzopyrene Determination”, Journal of America Industry Association, Vol. 22, pp. 221-275, 1961.
    Stephen, M. and Arshad, M. “Preparation of CNSiX Using a RF Hollow Cathode”, Diamond and Related Materials, Vol. 9, pp. 530-533, 2000.
    USEPA “A Screening Analysis of Ambient Monitoring Data for the Urban Area Source Program”, Office of Air Quality Planning and Standards, EPA-453/R-94-075, 1994.
    USEPA “Ambient Water Quality Criteria for the Protection of Human Health:Acrylonitrile”, EPA-882-R-98-006, July 1998。
    Wang, Y. F.; Lee W. J.; and Chen C. Y. “Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a Cold Plasma System”, Environment Science and Technology, Vol. 33, pp. 2234-2240, 1999.
    Westerholm, R.; Alsberg, T. E.; Frommelin, A. B.; Strandell, M. E.; Rannug, U.; Winquist, L.; Grigoriadis, V. and Egeback, K., “Effect of Fuel Polycyclic Aromatic Hydrocarbon Content on the Emissionof Polycyclic Aromatic Hydrocarbons and Other Mutagenic Substancesfrom a Gasoline-fueled Automobile”, Environmental Science and Technology, Vol. 22, No. 8, pp. 925-930, 1988.
    Whysner, J.; Ross, P. M.; Conaway, C. C.; Verna, L. K. and Williams, G. M. “Evaluation of Possible Genotoxic Mechanisms for Acrylonitrile Tumorigenicity”, Regulatory Toxicology and Pharmacology, Vol.27, No.3, pp.217-239, 1998.
    Wójtowicz, M. A.; Miknis, F. P.; Grimes, R. W.; Smith, W. W. and Serio, M. A. “Control of nitric oxide, nitrous oxide, and ammoniaemissions using microwave plasmas”, Journal of Hazardous Materials, Vol. 74, pp. 81-89, 2000.
    Woutersen, R. A. “ Toxicologic Profile of Acrylonitrile”, Scandinavian Journal Work Environmental Health, Vol.24. Suppl. No.2, pp.5-9, 1998.
    Wyatt J. M. and Knowles C. J. “Microbial Degradation of Acrylonitrile Waste Effluents: the Degradation of Effluents and Condensates from the Manufacture of Acrylonitrile”, International Biodeteroration & Biodegradation, pp.227-248, 1995.
    Yamaguchi, T.; Sasaki, K. and Kadota, K. “Etching efficiency for Si and SiO2 by CFX+, F+, and C+ ion beams extracted from CF4 plasma”, Plasma Chemistry and Plasma Processing, Vol. 20, No. 1, pp. 145-157, 2000.
    Yong, Z.; Wei, C.; Weimin, C.; Chunrong, L.; Xiaogang, W. and Kunlin, Z. “A plasma-activated Ni/a-Al2O3 catalyst for the conversion of CH4 to syngas”, Plasma Chemistry and Plasma Processing, Vol. 20, No. 1, pp. 137-143, 2000.
    Zhu, M.; Miao, Q. and Parulekar, S. J., “Oxidative Pyrolysis of Methane and Monochloroethane to Higher Hydrocarbons with Steam”, Chemical Engineering Science, Vol. 47, pp. 2677-2682, 1992.
    Ziejewski, M.; Goettler, H. J.; Cook, L.W. and Flicker, J., “Polycyclic Aromatic Hydrocarbons Emissions from Plant Oil Based Alternative Fuels” , SAE Paper 911765, 1991.
    大森俊一、橫島一郎、中根央“ 高週波、微波測定技術 ”,台灣復文興業出版社,pp. 1~74,1995。
    大東樹脂化學股份公司網頁資料,http://www.greco.com.tw/7.htm#1,2000。
    吳宗正,”迴歸分析-理論與應用”,復文書局,十三版,pp. 263-356,1997。
    張紹勳,”SPSS For Windows-多變量統計分析”,松崗電腦圖書公司,初版,pp. 5-1~5-183,1994。
    陳熹慄編譯,” 高週波基礎理論與應用 ”,全華科技圖書股份有限公司,1995。
    張國財、盧重興、林明瑞,“生物濾床處理PU樹脂實廠廢氣之研究”,第十七屆空氣污染控制技術研討會論文集,中華民國八十九年十二月一、二日,pp.344~345。
    楊思廉,“工業化學概論” ,五洲出版社,增訂版,pp.358-361,1990。
    賴耿陽譯著,” 電漿工學的基礎 ”,復文書局,pp. 40-107,1985。
    環境保護署網頁,”物質安全資料表:http://www.epa.gov.tw/J/toxic/msds.data/051.htm 及 http://www.epa.gov.tw/J/toxic/savehandbook/s051.htm ”, 2000。
    毒性化學物質管理法規,行政院環境保護署環境保護人員訓練所 編印;pp.281 ~ 282,2002,十二月。
    洪文啓,“以Pt/γ-Al2O3觸媒焚化處理丙烯晴之研究”,成大環工所碩士論文,June,1999。
    謝連德,”高週波電漿反應器中二氧化碳及甲烷之反應機制”,國立成功大學環境工程學系博士論文,1998。
    廖渭銅,”乙醚與環氧乙烷於低溫電漿中之反應機制” ,國立成功大學環境工程學系博士論文,2000。
    曹孟君,”甲基第三丁基醚於高週波電漿中之反應機制” ,國立成功大學環境工程學系碩士論文,2001。

    下載圖示 校內:2004-07-09公開
    校外:2004-07-09公開
    QR CODE