| 研究生: |
曲新天 Chu, Hsin-Tien |
|---|---|
| 論文名稱: |
結合電阻抗量測與形態分析之於三維神經網路之體外特性描述 Impedimetric and Morphological Characterization of in vitro 3D Neuronal Network |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 三維細胞培養 、神經網路 、雙光子顯微技術 、電阻抗量測 、微電極陣列 |
| 外文關鍵詞: | 3D cell culture, neuronal network, two-photon microscopy, impedance measurement, microelectrode array |
| 相關次數: | 點閱:105 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來許多研究顯示細胞培養於二維與三維的環境下具有不同的形態與基因表現。將細胞培養於由胞外基質構成的三維空間擁有更貼近生物體內微環境之性質。然而如何觀察三維環境下的細胞仍然是目前研究有待克服與改進的問題。為了由光學以及電學之角度研究神經網路在三維培養環境中的動態變化,我們建立了一個結合微電極陣列與三維神經細胞培養的平台,並改良至可以。實驗細胞取自Sprague-Dawley遠交群大鼠之初生幼鼠,並與Matrigel 1:1混合構成三維細胞培養。藉由 MAP II/GFAP 免疫螢光染色與Live/Dead細胞活性測定方法可得知細胞的純度與活性。神經細胞與神經膠質細胞的比例約為1:1,細胞則在體外培養至七天後仍具有72%的存活率。三維基質直接貼附於蓋玻片並且設置在載玻片上,可以直接套用在雙光子顯微系統上。由雙光子顯微鏡產生之影像可以觀察到神經在三維環境中的生長發育變化,神經細胞在體外培養的七天中會逐漸伸展其神經突,與其周圍細胞做連結並有聚集的傾向,細胞的密度與體積亦有增加的趨勢。電特性方面則是藉由微電極陣列進行電阻抗量測,藉由阻抗分析儀量測記錄三維細胞培養於一到七天,頻率在1 kHz至1 MHz的阻抗值。結果顯示細胞於三維基質上的生長的同時可觀察到電阻抗值之增加。
There is growing number of research showed that cells culture in three-dimensions (3D) and two-dimensions (2D) have different morphologies and gene expressions. 3D cell culture has been believed to resemble closer to the in vivo microenvironment. However, the observation of 3D cell culture is challenged. To study the dynamics of neuronal network formation optically and electrically in 3D cell culture, the platform combined microelectrode array (MEA) and 3D neuronal cell culture is constructed. Cells were obtained from neonatal Sprague-Dawley (SD) rat and mixed with Matrigel 1:1 to form 3D cell culture. The purity and viability of cells is tested by MAP II/GFAP immunohistochemistry and Live/Dead cell viability kit. The ratio of neurons and glial cells is around 1:1 and Cell viability is about 72% after 7 days in vitro (DIV). Since 3D matrices were adhered on standard cover slip and setup on glass slip, it can be adapted to two-photon microscopy directly. From two-photon images of neuronal cell culture in 3D Matrigel, dynamics of neuronal cells can be observed. Our results showed that the neurons can extend their neurites, connect with other cells and aggregate in 7 DIV of 3D cell culture. The cells density and volume inside the Matrigel also have tendency to increase. Embedding the MEAs into the 3D cell culture, impedance was recorded in the frequency range between 1 kHz and 1 MHz using LCR meter during 7 DIV. Results show that impedance was increased as the cells grew in the 3D matrices.
Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: Reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103-118.
Benya PD, Shaffer JD (1982) Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels. Cell 30:215-224.
Birgersdotter A, Sandberg R, Ernberg I (2005) Gene expression perturbation in vitro - A growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15:405-412.
Buitenweg JR, Rutten WL, Willems WP, van Nieuwkasteele JW (1998) Measurement of sealing resistance of cell-electrode interfaces in neuronal cultures using impedance spectroscopy. Med Biol Eng Comput 36:630-637.
Bursac N, Papadaki M, White JA, Eisenberg SR, Vunjak-Novakovic G, Freed LE (2003) Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng 9:1243-1253.
Cheng K, Lai YZ, Kisaalita WS (2008) Three-dimensional polymer scaffolds for high throughput cell-based assay systems. Biomaterials 29:2802-2812.
Chun TH, Hotary KB, Sabeh F, Saltiel AR, Allen ED, Weiss SJ (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125:577-591.
Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708-1712.
Delvoye P, Wiliquet P, Leveque JL, Nusgens BV, Lapiere CM (1991) Measurement of Mechanical Forces Generated by Skin Fibroblasts Embedded in a 3-Dimensional Collagen Gel. J Invest Dermatol 97:898-902.
Denk W, Svoboda K (1997) Photon upmanship: Why multiphoton imaging is more than a gimmick. Neuron 18:351-357.
Friedl P, Zanker KS, Brocker EB (1998) Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microsc Res Techniq 43:369-378.
Gillette BM, Jensen JA, Tang BX, Yang GJ, Bazargan-Lari A, Zhong M, Sia SK (2008) In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices. Nat Mater 7:636-640.
Gingras M, Beaulieu MM, Gagnon V, Durham HD, Berthod F (2008) In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model. Glia 56:354-364.
Hakim AM (1999) The neuron: Cell and molecular biology, 2nd edition. J Psychiatr Neurosci 24:355-356.
Haruyama T (2010) Cellular Engineering and Biosensor Technology for High Through-put Analysis on Drug Discovery. Yakugaku Zasshi 130:559-564.
Heuschkel MO, Fejtl M, Raggenbass M, Bertrand D, Renaud P (2002) A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J Neurosci Meth 114:135-148.
Hindie M, Vayssade M, Dufresne M, Queant S, Warocquier-Clerout R, Legeay G, Vigneron P, Olivier V, Duval JL, Nagel MD (2006) Interactions of B16F10 melanoma cells aggregated on a cellulose substrate. J Cell Biochem 99:96-104.
Irons HR, Cullen DK, Shapiro NP, Lambert NA, Lee RH, LaPlaca MC (2008) Three-dimensional neural constructs: a novel platform for neurophysiological investigation. J Neural Eng 5:333-341.
K'Owino IO, Sadik OA (2005) Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanal 17:2101-2113.
Keefer EW, Gramowski A, Stenger DA, Pancrazio JJ, Gross GW (2001a) Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors. Biosens Bioelectron 16:513-525.
Keefer EW, Norton SJ, Boyle NAJ, Talesa V, Gross GW (2001b) Acute toxicity screening of novel AChE inhibitors using neuronal networks on microelectrode arrays. Neurotoxicology 22:3-12.
Kyle AH, Chan CTO, Minchinton AI (1999) Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy. Biophys J 76:2640-2648.
Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: State of the art. Tissue Eng Pt B-Rev 14:61-86.
Lin SP, Kyriakides TR, Chen JJ (2009) On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays. Biomaterials 30:3110-3117.
Linderholm P, Vannod J, Barrandon Y, Renaud P (2007) Bipolar resistivity profiling of 3D tissue culture. Biosens Bioelectron 22:789-796.
Loers G, Schachner M (2007) Recognition molecules and neural repair. J Neurochem 101:865-882.
Meshel AS, Wei Q, Adelstein RS, Sheetz MP (2005) Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7:157-U170.
Midha R, Shoichet MS, Dalton PD, Cao X, Munro CA, Noble J, Wong MKK (2001) Tissue engineered alternatives to nerve transplantation for repair of peripheral nervous system injuries. Transplant P 33:612-615.
O'Connor SM, Andreadis JD, Shaffer KM, Ma W, Pancrazio JJ, Stenger DA (2000) Immobilization of neural cells in three-dimensional matrices for biosensor applications. Biosens Bioelectron 14:871-881.
O'Shaughnessy TJ, Lin HJ, Ma W (2003a) Functional synapse formation among rat cortical neurons grown on three-dimensional collagen gels. Neurosci Lett 340:169-172.
O'Shaughnessy TJ, Zim B, Ma W, Shaffer KM, Stenger DA, Zamani K, Gross GW, Pancrazio JJ (2003b) Acute neuropharmacologic action of chloroquine on cortical neurons in vitro. Brain Res 959:280-286.
Opp D, Wafula B, Lim J, Huang E, Lo JC, Lo CM (2009) Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron 24:2625-2629.
Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Bio 8:839-845.
Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews 38:1139-1151.
Provin C, Takano K, Sakai Y, Fujii T, Shirakashi R (2008) A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions. J Biomech 41:1436-1449.
Rutten WLC, Smit JPA, Frieswijk TA, Bielen JA, Brouwer ALH, Buitenweg JR, Heida C (1999) Neuro-electronic interfacing with multielectrode arrays - Selectivity and efficiency of motor-fiber stimulation, toward a cultured probe. Ieee Eng Med Biol 18:47-55.
Valero T, Moschopoulou G, Kintzios S, Hauptmann P, Naumann M, Jacobs T (2010a) Studies on neuronal differentiation and signalling processes with a novel impedimetric biosensor. Biosens Bioelectron 26:1407-1413.
Valero T, Moschopoulou G, Kintzios S, Hauptmann P, Naumann M, Jacobs T (2010b) Studies on neuronal differentiation and signalling processes with a novel impedimetric biosensor. Biosens Bioelectron 26:1407-1413.
Wang P (2006) Cell-based biosensors and bio-MEMS for its new applications. Rare Metal Mat Eng 35:47-50.
Warren SM, Sailon AM, Allori AC, Davidson EH, Reformat DD, Allen RJ (2009) A Novel Flow-Perfusion Bioreactor Supports 3D Dynamic Cell Culture. J Biomed Biotechnol.
Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE (2006) Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27:5990-6003.
Williams JC, Hippensteel JA, Dilgen J, Shain W, Kipke DR (2007) Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 4:410-423.
Woerly S (1997) Porous hydrogels for neural tissue engineering. Mater Sci Forum 250:53-68.
Xu T, Molnar P, Gregory C, Das M, Boland T, Hickman JJ (2009) Electrophysiological characterization of embryonic hippocampal neurons cultured in a 3D collagen hydrogel. Biomaterials 30:4377-4383.
Yagi T, Ito Y, Kanda Y, Tanaka S, Watanabe M, Uchikawa Y (1999) A prototype of a micro-electrode array for hybrid retinal implant. Invest Ophth Vis Sci 40:S732-S732.
Yu HR, Toh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW (2007) A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7:302-309.