| 研究生: |
王永豪 Wang, Yung-Hao |
|---|---|
| 論文名稱: |
Ag-In-Yb準晶的製造與其電性之研究 Formation and Electronic Properties of AgInYb Quasicrystals |
| 指導教授: |
林水田
Lin, Shui-Tien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 42 |
| 中文關鍵詞: | 準晶 |
| 外文關鍵詞: | quasicrystals, AgInYb |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們以等原子個數比例的Ag、In取代Cd元素製作出新的P-Type (六度空間為簡單立方結構) AgInYb準晶體。電阻量測顯示AgInYb準晶的溫度電阻係數 在Ag42.5In42.5Yb15和Ag42.25In42.25Yb15.5為負;但Ag42In42Yb16準晶樣品正負皆有出現。而且我們發現在低溫時電阻會急速下降,其中一個溫度電阻係數為正的樣品甚至到達0 Ω,似乎有超導相變的產生。經由SQUID測量磁化量後,計算其在溫度1.8 K的超導容積率約為3.8 % ~ 2.36 10-2 %,其量皆很小。所以我們認為此超導現象是由In或In合金雜質的超導態所造成的。再經由磁阻量測可看出溫度電阻係數為負的AgInYb準晶, 當溫度為4.2 K和外加磁場6 T時,其 的值落在Rapp整理許多非晶金屬和金屬態準晶體的經驗曲線 ( vs. )上,而且磁阻數據可由量子干涉理論擬合的很好。
We replace Cd elements with equal numbers of Ag and In to form a new ternary P-Type (the structure with simple cubic in six-dimension space) AgInYb quasicrystals. Resistivity measurements reveal the temperature coefficient of resistance, , is positive for (AgIn)100-xYbx quasicrystals with x=15, and x=15.5, but it can either be positive or negative for samples with (AgIn)84Yb16. At low temperature (T < 4 K), the resistivity for all the studied samples drops rapidly; in one of the samples, its resistivity even goes down to zero. This indicates the superconducting behavior of Ag-In-Yb quasicrystals. However, the value of volumetric proportion of superconductors (VPS) in studied samples estimated from the magnetization at 1.8 K measured by SQUID ranges from 3.8 % to 2.36 10-2 %. Small values of VPS suggest the superconductivity observed in Ag-In-Yb quasicrystals is possibly due to the impurity of In and/or In-based alloys. Magnetoresistance measurements on the samples with a negative value of exhibit the values of at 4.2 K and 6 T following on the empirical line obtained by plotting vs. for many amorphous metals and metallic quasicrystals. Moreover, these magnetoresistance data can be fitted well with the theories of quantum interference effects.
1. D. Shechtmann, I. Blech, D. Gratias, and J. W. Chan, Phys. Rev. Lett. 53, 1951 (1984).
2. A. P. Tsai, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys. 26, L1505 (1987).
3. J. Q. Guo, E. Abe, and A. P. Tsai, Phys. Rev. B 62, R14605 (2000).
4. J. Q. Guo, and A. P. Tsai, Philos. Mag. Lett. 82, 349 (2002).
5. R. Tamura, Y. Murao, S. Takeuchi, K. Tokiwa, T. Watanabe, T. J. Sato, and A. P. Tsai, Jpn. J. Appl. Phys. 40, L912 (2001).
6. C. Kittel, “Introduction to Solid State”, 7th ed., John Wiley & Sons Inc. (1996).
7. V. Elser, and C. L. Henley, Phys. Rev. Lett. 55, 2883 (1985).
8. 黃嘉賢,“二元Cd-Yb準晶與類準晶的一些物理特性”,國立成功大學物理研究所碩士論文 (2003)。
9. V. Elser, Phys. Rev. B 32, 4892 (1985).
10. 董闖,“準晶材料”,北京國防工業出版社 (1998)。
11. C. Janot, “Quasicrystals A Primer”, 2nd ed., Oxford Science Publications (1992).
12. H. Fukuyama, and K. Hoshino, J. Phys. Soc. Jpn. 50, 2131 (1981).
13. P. A. Lee, and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
14. David V. Baxter, R. Richter, M. L. Trudeau, R. W. Cochrane, and J. O. Ström-Olsem, J. Phys. France 50, 167 (1989).
15. B. L. Alstshuler, and A. G. Aronov, Solid State Commun. 30, 115 (1979).
16. 王昌仁,“Al-Pd-Re準晶體的低溫電導研究”,國立成功大學物理研究所博士論文 (1998)。
17. J. Hasegawa, R. Tamura, and S. Takeuchi, Phys. Rev. B 66, 132201 (2002).
18. Z. M. Stadnik, “Physical Properties of Quasicrystals”, P.149, Springer (1998).
19. B. J. Hickey, D. Greigand, and M. A. Howson, J. Phys. F:Met. Phys. 16, L13 (1986).
20. H. Takahashi, T. Takeuchi, and U. Mizutani, Abstract in AIWQ3 (2003&2004).
21. D. Tetuka, R. Tamura, and S. Takeuchi, Abstract in AIWQ3 (2004).