| 研究生: |
劉濰綸 Liu, Wei-Lun |
|---|---|
| 論文名稱: |
功能性梯度材料三明治板受雙軸壓力作用之三維挫屈分析 Three-dimensional buckling analysis of functionally graded material sandwich plates under bi-axial compressive loads |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | Reissner混合變分原理 、計算模型 、有限元素法 、功能性梯度材料 、挫屈 、板 |
| 外文關鍵詞: | Reissner’s mixed variational theorem, computational modeling, finite layer methods, functionally graded materials, buckling, plates. |
| 相關次數: | 點閱:115 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出基於Reissner 混合變分原理(Reissner mixed variational theorem,RMVT)之有限層狀元素法(finite rectangular layer methods, FRLMs)應用於具簡支承正交性複合材料矩形板以及功能性材料三明治矩形板受雙軸壓作用之三維線性挫屈分析。文中假設功能性梯度材料的材料參數沿厚度方向以冪級數型態分布。文中將平板細分為數個有限層板,並利用傅立葉函數與Lagrange 多項式函數對每一離散層各面內與面外變數進行內插,利用h-refinement 程序進行收斂性分析。此外,本文將沿著厚度方向改變形狀函數的次數來提高精度,並探討次數的高低對收斂性以及準確性造成的影響,其中本有限層狀法求得的解亦與文獻中三維彈性力學正解以及精準二維數值解進行綜合比較。
Based on the Reissner mixed variational theorem (RMVT), finite rectangular
layer methods (FRLMs) are developed for the three-dimensional (3D) linear
buckling analysis of simply-supported, fiber-reinforced composite material (FRCM)
and functionally graded material (FGM) sandwich plates subjected to bi-axial
compressive loads. In this work, the material properties of the FGM layers are
assumed to obey the power-law distributions of the volume fractions of the
constituents through the thickness, and the plate is divided into a number of finite
rectangular layers, in which the trigonometric functions and Lagrange polynomials
are used to interpolate the in- and out-of-plane variations of the field variables of
each individual layer, respectively, and an h-refinement process is adopted to yield
the convergent solutions. The accuracy and convergence of the RMVT-based
FRLMs with various orders used for expansions of each field variables through the
thickness are assessed by comparing their solutions with the exact 3D and accurate
two-dimensional ones available in the literature.
References
Akhras, G., Li, W.C. (2007), “Three-dimensional static, vibration and stability
analysis of piezoelectric composite plates using a finite layer method”, Smart
Mater. Struct., 16, 561-569.
Akhras, G., Li, W.C. (2008), “Three-dimensional thermal buckling analysis of
piezoelectric composite plates using the finite layer method”, Smart Mater.
Struct., 17, 1-8.
Brischetto, S., Carrera, E. (2010), “Advanced mixed theories for bending analysis of
functionally graded plates”, Comput. Struct., 88, 1474-1483.
Carrera, E. (2000a), “A priori vs. a posteriori evaluation of transverse stresses in
multilayered orthotropic plates”, Compos. Struct., 48, 245-260.
Carrera, E. (2000b), “An assessment of mixed and classical theories on global and
local response of multilayered orthotropic plates”, Compos. Struct., 50,
183-198.
Carrera E. (2001), “Developments, ideas, and evaluations based upon Reissner’s
Mixed Variational Theorem in the modeling of multilayered plates and shells”,
Appl. Mech. Rev., 54, 301-329.
Carrera, E. (2003a), “Historical review of zig-zag theories for multilayered plates
and shells”, Appl. Mech. Rev., 56, 287-308.
30
Carrera, E. (2003b), “Theories and finite elements for multilayered plates and shells:
A unified compact formulation with numerical assessment and benchmarks”,
Arch. Comput. Methods Eng., 10, 215-296.
Carrera, E., Brischetto, S. (2009), “A survey with numerical assessment of classical
and refined theories for the analysis of sandwich plates”, Appl. Mech. Rev., 62,
1-17.
Carrera, E., Brischetto, S., Cinefra, M., Soave, M. (2010), “Refined and advanced
models for multilayered plates and shells embedding functionally graded
material layers”, Mech. Adv. Mater. Struct., 17, 603-621.
Carrera, E., Brischetto, S., Robaldo A. (2008), “A variable kinematic model for the
analysis of functionally graded material plates”, AIAA J., 46, 194-203.
Carrera, E., Ciuffreda, A. (2005a), “Bending of composites and sandwich plates
subjected to localized lateral loadings: A comparison of various theories”,
Compos. Struct., 68, 185-202.
Carrera, E., Ciuffreda, A. (2005b), “A unified formulation to assess theories of
multilayered plates for various bending problems”, Compos. Struct., 69,
271-293.
Cheung, Y.K., Jiang, C.P. (2001), “ Finite layer method in analysis of piezoelectric
composite laminates”, Comput. Methods Appl. Mech. Eng., 191, 879-901.
31
Cheung, Y.K., Kong, J. (1993), “Approximate three-dimensional analysis of
rectangular thick laminated plates: Bending, vibration and buckling”, Comput.
Struct., 47, 193-199.
D’Ottavio, M., Carrera, E. (2010), “Variable-kinematics approach for linearized
buckling analysis of laminated plates and shells”, AIAA J., 48, 1987-1996.
Fan, J., Ye, J. (1993), “Exact solutions of buckling for simply supported thick
laminates”, Compos. Struct., 24, 23-28.
Gu, H., Chattopadhyay, A. (2000), “Three-dimensional elasticity solution for
buckling of composite laminates”, Compos. Struct., 50, 29-35.
Kim, S.E., Thai, H.T., Lee, J. (2009a), “Buckling analysis of plates using the two
variable refined plate theory”, Thin-Walled Struct., 47, 455-462.
Kim, S.E., Thai, H.T., Lee, J. (2009b), “A two variable refined plate theory for
laminated composite plates”, Compos. Struct., 89, 197-205.
Na, K.S., Kim, J.H. (2004), “Three-dimensional thermal buckling analysis of
functionally graded materials”, Compos. Part B: Eng., 35, 429-437.
Na, K.S., Kim, J.H. (2006), “Three-dimensional thermomechanical buckling
analysis for functionally graded composite plates”, Compos. Struct. 73,
413-422.
32
Nali, P., Carrera, E., Lecca, S. (2011), “Assessments of refined theories for buckling
analysis of laminated plates”, Compos. Struct., 93, 456-464.
Noor, A.K. (1975), “Stability of multilayered composite plates”, Fibre Sci. Technol.,
8, 81-89.
Noor, A.K., Burton, W.S. (1990), “Assessment of computational models for
multilayered anisotropic plates”, Compos. Struct., 14, 233_265.
Noor, A.K., Burton, W.S., Bert, C.W. (1996), “Computational model for sandwich
panels and shells”, Appl. Mech. Rev., 49, 155_199.
Reddy, J.N. (1993), “An evaluation of equivalent single layer and layerwise theories
of composite laminates”, Compos. Struct., 25, 21_35.
Reddy, J.N., Khdeir, A.A. (1989), “Buckling and vibration of laminated composite
plates using various plate theories”, AIAA J., 27,1808-1817.
Reddy, J.N., Phan, N.D. (1985), “Stability and vibration of isotropic, orthotropic and
laminated plates according to a higher-order shear deformation theory”, J.
Sound Vib., 98, 157-170.
Reissner, E. (1984), “On a certain mixed variational theory and a proposed
application”, Int. J. Numer Methods Eng., 20, 1366-1368.
Reissner, E. (1986a), “On a mixed variational theorem and on a shear deformable
plate theory”, Int. J. Numer Methods Eng., 23, 193-198.
33
Reissner, E. (1986b), “On a certain mixed variational theorem and on laminated
elastic shell theory”, Proc. Euromech-Colloquium, 219, 17-27.
Teo, T.M., Liew, K.M. (1999a), “Three-dimensional elasticity solutions to some
orthotropic plate problems”, Int. J. Solids Struct., 36, 5301-5326.
Teo, T.M., Liew, K.M. (1999b), “A differential quadrature procedure for
three-dimensional buckling analysis of rectangular plates”, Int. J. Solids Struct.,
36, 1149-1168.
Thai, H.T., Kim, S.E. (2011), “Levy-type solution for buckling analysis of
orthotropic plates based on two variable refined plate theory”, Compos. Struct.,
93, 1738-1746.
Wu, C.P., Chang, R.Y. (2012), “A unified formulation of RMVT-based finite
cylindrical layer methods for sandwich circular hollow cylinders with an
embedded FGM layer”, Compos. Part B: Eng., 43, 3318-3333.
Wu, C.P., Chen, C.W. (2001), “Elastic buckling of multilayered anisotropic conical
shells”, J. Aerospace Eng. 14, 29-36.
Wu, C.P., Chen, W.Y. (1994), “Vibration and stability of laminated plates based on
a local high order plate theory”, J. Sound Vib., 177, 503-520.
34
Wu, C.P., Chiu, K.H., Wang, Y.M. (2008), “A review on the three-dimensional
analytical approaches of multilayered and functionally graded piezoelectric
plates and shells”, Comput. Mater. Continua, 18, 93-132.
Wu, C.P., Chiu, S.J. (2001), “Thermoelastic buckling of laminated composite
conical shells”, J. Therm. Stresses, 24, 881-901.
Wu, C.P., Chiu, S.J. (2002), “Thermally induced dynamic instability of laminated
composite conical shells”, Int. J. Solids Struct., 39, 3001-3021.
Wu, C.P., Li, H.Y. (2010), “The RMVT- and PVD-based finite layer methods for
the three-dimensional analysis of multilayered composite and FGM plates”,
Compos. Struct., 92, 2476-2496.
Wu, Z., Chen, W. (2007), “Thermomechanical buckling of laminated composite and
sandwich plates using global-local higher order theory”, Int. J. Mech. Sci., 49,
712-721.
Wu, Z., Chen, W. (2008), “An assessment of several displacement-based theories
for the vibration and stability analysis of laminated composite and sandwich
beams”, Compos. Struct., 84, 337-349.
Wu, Z., Cheung, Y.K., Lo, S.H., Chen, W. (2008), “Effects of higher-order
global-local shear deformations on bending, vibration and buckling of
multilayered plates”, Compos. Struct., 82, 277-289.
35
Zenkour, A.M. (2005), “A comprehensive analysis of functionally graded sandwich
plates: Part 2-Buckling and free vibration”, Int. J. Solids Struct. 42, 5243-5258.
Zenkour, A.M., Ai-Sheikh, K. (2001), “Buckling and free vibration of elastic plates
using simple and mixed shear deformation theories”, Acta Mech., 146,
183-197.
Zenkour, A.M., Fares, M.e. (2001), “Bending, buckling and free vibration of
non-homogeneous composite laminated cylindrical shells using a refined
first-order theory”, Compos. Part B: Eng., 32, 237-247.
Zhao, X., Lee, Y.Y., Liew, K.M. (2009), “Mechanical and thermal buckling analysis
of functionally graded plates”, Compos. Struct., 90, 161-171.