| 研究生: |
卓忠哲 Zhou, Zhong-Zhe |
|---|---|
| 論文名稱: |
紊流滑動軸承摩擦係數之研究 The Study of Friction Coefficients for Turbulent Slider Bearings |
| 指導教授: |
梁勝明
Liang, Shen-Min 徐旭華 Shyu, Shiuh-Hwa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 摩擦係數 、紊流 、等溫 、熱液動力 |
| 外文關鍵詞: | friction, turbulent, isothermal, thermohydrodynamic |
| 相關次數: | 點閱:60 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在軸承系統的設計與分析中,精確的軸承性能參數計算是一項非常重要的工作。本研究之目的即在建立紊流形態熱液動力平板滑動軸承之摩擦係數計算公式。研究對象為無限寬及有限寬軸承以及等溫和熱液動力形態,並考慮慣性效應。由幾何外形、邊界條件及統御方程式,本文推導出影響流體的參數:收斂比(h* )、纖細比(B*)、無因次溫度-黏度參數(Ecμ)、培克萊特數(Pe)、平均雷諾數(Rem)、厚度長度比(hm/L)等。其中h*、B*、Ecμ 及Rem 的影響為本研究的重點。結果發現,當幾何外形參數收斂比及纖細比增加,壓力也增加。當雷諾數增加,紊流強度增加,故壓力也增加。當無因次溫度-黏度參數增加,流體黏度降低,壓力也隨之降低。
本研究採用的數值方法,在無限寬軸承是使用Legendre collocation方法,有限寬軸承是採用高效率且廣義的模式EGFLUM。這兩種模式皆考慮慣性項、熱效應及紊流且數值效率高。數值方法計算出來的數值資料將建立成資料庫。最後資料庫以least-squares方法找出軸承摩擦係數計算公式。機械設計者最後可以利用本文所提供的計算公式透過計算機算出摩擦係數。
Accurate calculation of performance parameters for bearing is an important task in the design or analysis of bearing systems . The objectives of this study are to perform a complete parametric study for slider bearings and to establish the formulations of friction coefficients. Both infinitely-wide and finite width slider bearings were considered. The regimes investigated include isothermal and thermohydrodynamic. In all the cases, inertial effects were included. From the geometry, thermal boundary condition, and governing equations, the dimensionless parameters were obtained including the convergence ratio ( h* ), slenderness ratio ( B* ), dimensionless temperature-viscosity parameter ( Ecμ ), mean Reynolds number ( Rem ), Peclet number ( Pe ), ratio of mean film thickness to bearing length ( hm/L ). Among these parameters, the effects of h*, B*, Ecμ and Rem are of the primary consideration. From the results, it was found that pressure increases with the increase of convergence ratio or slenderness ratio. When mean Reynolds number increases, the pressure will increase as the turbulent intensity become greater. As Ecμ increases, the viscosity will decrease which yield a smaller pressure distribution.
Models used in this study include inertial, thermal, and turbulent models. For infinitely-wide bearings, a collocation method was used, and for finite-width bearings, an efficient and general fluid film lubrication model (EGFLUM) was used. Then uses the parameter results to constitute the database. The least-squares method was used to establish formulation of friction coefficients. Designers can use the equations provided in this article to calculate friction coefficients using a calculator.
[1] 張啟城,(2002), “紊流型態熱液動力平板滑動軸承之性能參數研究,” 國立中正大學碩士論文。
[2] Fillon, M. and Khonsari, M., (1996),“ Thermodynamic Design Charts for Tilting-Pad Journal Bearings,” ASME Journal of Tribology, Vol. 118, pp. 232-238.
[3] Jang, J. Y. and Khonsari, M. M., (1997),“ Thermohydrodynamic Design Charts for Slider Bearings,” ASME Journal of Tribology, Vol. 119, pp.733-740.
[4] Keogh, P. S., Gomiciaga, R. and Khonsari, M. M., (1997),“ CFD Based Design Techniques for Thermal Prediction in a Generic Two Axial-Groove Hydrodynamic Journal Bearing,” ASME Journal of Tribology, Vol. 119, pp. 428-436.
[5] Gross, W. A., Matsch, L. A., Castelli, V., Eshel, A., Vohr, J. H., and Wildmann, M., (1980), Fluid Film Lubrication, John Wiley & Sons, Inc., New York, pp. 74-375.
[6] Hamrock, B. (1994), Fundamental of Fluid Film Lubrication, McGraw- Hill, Inc., New York, pp. 196-277.
[7] Bhushan, B. (1999), Principles and Applications of Tribology, John Wiley & Sons, Inc., New York, pp. 623-681.
[8] Elrod, H. G. and Ng, C. W., (1967), “A Theory for Turbulent Fluid Films and Its Application to Bearings,” ASME Journal of Lubrication Technology, pp. 346-362.
[9] Constantinescu, V. N. (1959), “On Turbulent Lubrication,” Proc. Inst. Mech. Eng., Vol. 173, No. 38, pp. 881-896.
[10] Hirs, G. G., (1973) “A Bulk-Flow Theory for Turbulence in Lubricant Films, ” ASME Jour. of Lubr. Tech., pp.137-146.
[11] Ng, C. and Pan, C. H. T., (1965), “A Linearized Turbulent Lubrication Theory ,” ASME Jour. of Basic Engineering, pp. 675-688.
[12] Shyu, S.-H., Jeng, Y.-R. and Chang, C.-C., (2004), “Load Capacity for Adiabatic Infinitely Wide Plane Slider Bearings in the Turbulent Thermohydrodynamic Regime,” STLE Tribology Transactions, Vol. 47, pp. 396-401. (NSC 89-2218-E-274-001) (SCI, EI)
[13] Shyu, S.-H., Jeng, Y.-R. and Chang, C.-C., (2006), “Load Capacity for Adiabatic Finitely-Width Plane Slider Bearings in the Turbulent Thermohydrodynamic Regime,” STLE Tribology Transactions, Vol. 49, No. 1, pp. 26-32. (NSC 91-2212-E-274-002)
[14] 李富利,(2003), “紊流型態熱液動力頸軸承之性能參數研究,”國立中正大學碩士論文。
[15] Shyu, S.-H., Jeng, Y.-R., Li, F., Wei-Ren Lee, and Sheng-Jii Hsieh, (2007) “Formulations of Performance Parameters for Adiabatic Infinitely Wide Journal Bearings in Turbulent Isothermal and THD Regimes,” STLE 62nd Annual Meeting in Philadelphia, PA, US, May 6-10, (NSC 90-2212- E-274-001, NSC 92-2212-E-274-003)
[16] 李維仁,(2004),“有限寬頸軸承在紊流型態熱液動力領域之性能參數研究,國立成功大學碩士論文。
[17] 徐旭華,李維仁,謝勝己,梁勝明,(2005), 「熱液動有限寬頸軸承在紊流領域的設計參數公式之建立」,第二屆磨潤暨材料科技研討會,台灣,台南,崑山科技大學,pp. 339-346 (NSC 92-2212-E-274-003)
[18] Reynolds, O., (1886), “On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil,” Phil. Trans. Roy. Soc., Lond., Vol. 177, Part 1, pp. 157-234.
[19] Szeri, A. Z., (1987), “Some Extensions of the Lubrication Theory of Osborne Reynolds,” ASME Journal of Tribology, Vol. 109, pp. 21-36.
[20] Dowson, D. and Hudson, J. D., (1964), “Thermo-Hydrodynamic Analysis of the Infinite Slider Bearing: Part I, The Plane-Inclined Slider-Bearing. Part II, The Parallel-Surface Bearing,” Lubrication and Wear, May 23-25, 1963, Inst. of Mech. Engrs., London, pp. 34-51.
[21] Elrod, H. G., (1991), “Efficient Numerical Method of the Thermody- namics of Laminar Lubricating Films,” ASME Journal of Tribology, Vol. 113, pp. 506-511.
[22] Ezzat, H. A. and Rohde, S. M., (1973), “A Study of the Thermohydro- dynamic Performance of Finite Slider Bearings,” ASME Journal of Lubrication Technology, Vol. 95, pp. 298-307.
[23] Ha, H. C., Kim, H. J., and Kim, K. W., (1995), “Inlet Pressure Effects on the Thermohydrodynamic Performance of a Large Tilting Pad Journal Bearing,” ASME Journal of Tribology, Vol. 117, pp.160-165.
[24] Hahn, E. J. and Kettleborough, C. F., (1967), “Solution for the Pressure and Temperature in an Infinite Slider Bearing of Arbitrary Profile,” ASME Journal of Lubrication Technology, pp. 445-452.
[25] Hunter, W. B. and Zienkiewicz, O.C., (1960), “Effects of Temperature Variations Across The Lubricant Films in The Theory of Hydrodynamic Lubrication,” Journal of Mechanical Engineering Science, Vol. 2, No. 1, pp. 52-58.
[26] Khonsari, M. M., Jang, J. Y., and Fillon, M., (1996), “On the Generali- zation of Thermohydrodynamic Analyses for Journal Bearings,” ASME Journal of Tribology, Vol. 118, pp. 571-579.
[27] Safar, Z. and Szeri, A. Z., (1974), “Thermohydrodynamic Lubrication in Laminar and Turbulent Regimes,” ASME Journal of Lubrication Technology, Vol. 96, pp. 48-57.
[28] Suganami, T. and Szeri, A. Z., (1979), “A Thermohydrodynamic Analysis of Journal Bearing,” ASME Journal of Lubrication Technology, Vol. 101, pp. 21-27.
[29] Shyu, S.-H., (1998), Ranges of Validity for the Reynolds Equation and the Bulk-Flow Model for a Slider Bearing, Ph.D. Dissertation, The Pennsylvania State University.
[30] Talmage, G. and Carpino. M., (1997), “A Pseudospectral-Finite Difference Analysis of an Infinitely Wide Slider Bearing with Thermal and Inertial Effects,” Tribology Transactions, Vol. 40, No.2, pp. 251-258.
[31] King, K. F. and Taylor, C. M., (1977), “An Estimation of The Effect of Fluid Inertia on The Performance of The Plane Inclined Slider Thrust Bearing With Particular Regard to Turbulent Lubrication,” ASME Journal of Lubrication Technology, pp. 129-135.
[32] Launder, B. E. and Leschziner, M., (1978), “Flow in Finite-Width, Thrust Bearings Including Inertia Effects, I-Laminar Flow, II-Turbulent, ” ASME Journal of Lubrication Technology, Vol. 100, pp. 330-345.
[33] Childs, D., (1993), Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis, John Wiley & Sons, Inc., New York, pp.229-233.
[34] Yang, Z., San Andres, L., and Childs, D. W. (1993), “Thermal Effects in Cryogenic Liquid Annular Seals -- Part I: Theory and Approximate Solution,” ASME Journal of Tribology, Vol. 115, pp. 267-276.
[35] Yang, Z., San Andres, L., and Childs, D. W., (1993), “Importance of Heat Transfer from Fluid Film to Stator in Turbulent Flow Annular Seals,” Wear, Vol. 160, pp. 269-277.
[36] San Andres, L., Yang, Z., and Childs, D. W., (1993), “Thermal Effects in Cryogenic Liquid Annular Seals- Part II: Numerical Solution and Results,” ASME Journal of Tribology, Vol. 115, pp. 277-284.
[37] Constantinescu, V. N. and Galetuse, S., (1974), “On the Possibilities of Improving the Accuracy of the Evaluation of Inertia Forces in Laminar and Turbulent Films,” ASME Journal of Lubrication Technology, pp. 69-79.
[38] Shyu, S.-H., Talmage, G., and Carpino, M., (2000), “Comparison of Lubrication Models for Plane Slider Bearings,” STLE Tribology Transactions, Vol. 43, No. 1, pp. 74-81.
[39] Shyu, S.-H., (1998), Ranges of Validity, pp. 90-107.
[40] Shyu, S.-H., (1998), Ranges of Validity, pp. 129-131.
[41] Shyu, S.-H., (1998), Ranges of Validity, pp. 53-75.
[42] Yakhot, V., Orszag, S. A., and Yakhot, A., (1987), “Heat Transfer in turbulent Fluids-- I. Pipe Flow”, International Journal of Heat and Mass Transfer, Vol. 30, No. 1, pp. 15-22.
[43] Bouard, L., Fillon, M., and Frene, J., (1996), “Thermohydrodynamic Analysis of Tilting-Pad Journal Bearings Operating in Turbulent Flow Regime,” ASME Journal of Tribology, Vol. 118, pp. 225-231.
[44] Shyu, S.-H., and Jeng, Y.-R., (2002), “An Efficient General Fluid-Film Lubrication Model for Plane Slider Bearings,” STLE Tribology Transactions, Vol. 45, No. 2, pp. 161-168.
[45] Shyu, S.-H., (1998), Ranges of Validity, pp. 54-55.
[46] Suganami, T. and Szeri, A. Z., (1979), “A Thermohydrodynamic Analysis of Journal Bearing,” ASME Journal of Lubrication Technology, Vol. 101, pp. 21-27.
[47] Shyu, S.-H., (1998), Ranges of Validity, pp. 53-66.
[48] Harada, M. and Aoki, H., (1976), “A Turbulent Lubrication Theory and Its Application to Full Journal Bearings,” Theoretical And Applied Mechanics, Univ. of Tokyo Press, Vol. 26, pp. 563-579.
[49] Shyu, S.-H., (1998), Ranges of Validity, pp. 67-75.
[50] Hildebrand, F. B., 1974, Introduction to Numerical Analysis, 2nd ed., McGraw-Hill, New York, pp. 81-85.
[51] Constantinescu, V. N. (1970), “On the Influence of Inertia Forces in Turbulent and Laminar Self-Acting Films,” ASME Journal ofLubrication Technology, pp. 473-481.
[52] Shyu, S.-H., (1998), Ranges of Validity, pp. 18-42.
[53] Shyu, S.-H., (1998), Ranges of Validity, pp. 19-21.