| 研究生: |
何嘉祥 Ho, Chia-Hsiang |
|---|---|
| 論文名稱: |
閉迴路無閥幫浦系統非線性衝擊動態響應之數值研究 A Numerical Study on the Nonlinear Impact Dynamics of a Closed-loop Valveless Pumping System |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 閉迴路無閥幫浦系統 、擠壓器動態響應 、非線性動力學 、Liebau效應 、阻抗幫浦 |
| 外文關鍵詞: | closed-loop valveless pumping system, actuator impact, nonlinear dynamics, Liebau effect, impedance pump |
| 相關次數: | 點閱:207 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無閥幫浦系統由於無閥門,設計簡單,較無損壞的問題,所以被廣泛運用在工程或者生醫方面。其原理是利用系統中各組件交界阻抗不對等的特性去驅動流體,但何種的驅動頻率或者擠壓方式為最有效率,許多學者眾說紛紜,沒有定論。本研究團隊發現文獻中許多研究皆忽略了無閥幫浦中,擠壓器和受壓之彈性組件之間的動態衝擊行為,所以便設計了一個由兩條硬管連接兩彈性球所組成的模型系統,其中擠壓器為系統動力來源,持續地碰撞彈性球去驅動流體。先前的研究發現,當擠壓頻率超過門檻頻率時,擠壓器會和彈性球分開,因此產生淨流量。由於其模型為預壓式閉迴路無閥幫浦系統,所以系統靜止時,擠壓器掐著彈性球。因此,我們提出了疑問,如果擠壓器一開始就沒有和彈性球接觸會產生甚麼樣的情形。所以我們將模型作改變,並試著討論預壓和無預壓的差異性。在本文中,我們比較漸近解和數值解的結果非常吻合,因此確信數值解的可信度;同時,也利用數值解去分析擠壓器和彈性球之間的各種碰撞模式。在無預壓式閉迴路無閥幫浦系統中,我們將各種不同的動態響應作分類,並利用體積隨時間的關係圖和相位圖讓我們對各種碰撞情形之間的轉換有更深一層的了解。發現無預壓式無閥幫浦系統的碰撞模式更為複雜,此外,也對流量和系統複雜響應區作討論,希望能夠對閉迴路無閥幫浦系統有更進一步的貢獻。
Valveless pumping systems have been widely used in engineering and biomedical applications, because they do not require a moving valve to regulate the flow direction, which greatly simplifies the system design and increases the system robustness. One important physical mechanism for the working of valveless pumping systems is the impedance mismatch between their constituent components. But, since there are other mechanisms that also play a significant part, such as the interaction between the actuator and the pliant part of a valveless pumping system, the system dynamics indeed is complicated and remains incompletely understood. It is therefore not a straightforward task to optimize the system performance and produce a maximized flow rate. Indeed, in this work we aim to investigate the aforementioned interaction between the actuator and the pliant part of a valveless pumping system, which oftentimes is overlooked in previous studies.
To that end, here we consider a model system consisting of two distensible reservoirs connected by two rigid tubes of different sizes. In addition, an actuator periodically compresses one of the distensible reservoirs to drive the fluid in the closed loop. A mathematical model accounting for mass and momentum balance in such a system also is constructed. It has been shown in previous studies that even if the above model system is pre-compressed ― i.e., with the maximum volume of the compressed distensible reservoir set by the actuator being less than its free volume ― the actuator still would separate from the distensible reservoir when the driving frequency exceeds a certain threshold frequency, resulting a net flow rate in the loop. The emphasis of the present work therefore is on the case without pre-compression, and the purpose is to clarify the dynamical difference between systems with and without pre-compression.
Through asymptotic calculations and numerical computations, we discover that the interaction modes of the compressed reservoir with the actuator are more complex for the system without pre-compression, as one might have expected. Specifically, compared with pre-compressed systems, the dynamical response of the system without pre-compression exhibits many more new types. In this thesis, the temporal evolutions of the distensible reservoirs are closely monitored, and phase diagrams of such new system responses are systematically examined, so as to bring about a deeper understanding of the system dynamics of the valveless pumping system. Moreover, the dependence of the net flow rate on the system modes also is discussed here.
[1]Liebau G, Über ein ventilloses Pumpprinzip, Naturwiss 41:327, 1954.
[2]Moser M, Huang JW, Schwarz GS, Kenner T, Noordergraaf A, Impedance defined flow: Generalisation of William Harvey’s concept of the circulation — 370 years later, Int J Cardiovasc Med Sci 1:205–211, 1998.
[3]Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M, Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis , Nature 421:172–177, 2003.
[4]Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai H-J, Hove JR, Fraser SE, Dickinson ME, Gharib M, The embryonic vertebrate heart tube is a dynamic suction pump, Science 312:751–753, 2006.
[5]Ottesen JT, Valveless pumping in a fluid-filled closed elastic tube-system: one dimensional theory with experimental validation, J Math Biol 46:309-332, 2003.
[6]Weber EH, De pulsu, resorptione, auditu et tactu. Annotationes Anatomicae et Physiologicae, Lipsiae, 1834.
[7]Donders FC, Physiologie des Menschen Leipzig, 1856
[8]Liebau G, Arterielle Pulsation und venöse Repulsation, Z Gesamte Exp Med 123:71–90,1954.
[9]Liebau G, Die Strömungsprinzipien des Herzens, Z Kreislaufforsch 44:677–684, 1955.
[10]Liebau G, Herzpulsation und Blutbewegung, Z Gesamte Exp Med 125:482–498, 1955.
[11]Liebau G, Aus welchem Grunde bleibt die Blutförderung durch das Herz bei valvulӓrem Versagen erhalten?, Z Kreislaufforsch 45:481–488, 1956.
[12]Mahrenholtz O, Ein Beitrag zum Förderprinzip periodisch arbeitender, ventilloser Pumpen, Forsch Ing-Wes 29:47–56, 73–81, 1963.
[13]Bredow HJ, Untersuchung eines ventillosen pumpprinzips, Fortschr-Ber 6:7:1, 1968.
[14]Bredow HJ, Untersuchungen über ein vom menschlichen Kreislauf abgeleitetes, ventilloses Strömungsprinzip, Verh Dtsch Ges Kreislaufforsch 34:296, 1968.
[15]Takagi S, Saijo T, Study of a piston pump without valves (1st report, on a pipe-capacity-system with a T-junction), Bull JSME 26:1366–1372, 1983.
[16]Takagi S Takahashi K, Study of a piston pump without valves (2nd report, pumping effect and resonance in a pipe-capacity-system with a T-junction), Bull JSME 28:831–836, 1985.
[17]Hickerson AI, Rinderknecht D, Gharib M, Experimental study of the behavior of a valveless impedance pump, Exp Fluids 38:534–540, 2005.
[18]Hickerson AI, An experimental analysis of the characteristic behaviors of an impedance pump , Dissertation (Ph.D.), California Institute of Technology , 2005.
[19]Hickerson AI, Gharib, M., On the resonance of a pliant tube as a mechanism for valveless pumping, J Fluid Mech 555:141–148, 2006.
[20]Avrahami I, Gharib M, Computational studies of resonance wave pumping in compliant tubes, J Fluid Mech 608:139–160, 2008.
[21]Wen CY, Chang HT, Design and characterization of valveless impedance pumps, J Mech 25:345–354, 2009.
[22]林政偉,開迴路無閥幫浦之理論分析,國立成功大學機械所碩士論文,2009
[23]Moshe R, Idit A, Net flow rate generation by a multi-pincher impedance pump, Computers & Fluids 39: 1634–1643, 2010.
[24]Yang TS, Wang CC, Effects of actuator impact on the nonlinear dynamics of a valveless pumping system, accepted to be published in J Mech Med Biol, DOI:10.1142/S0219519410003800,2010.
[25]Wang CC, Yang TS, Dynamical responses of a valveless fluid loop excited by the impact of a compression actuator, accepted to be published in J CSME,2010.
[26]王齊中,致動器衝擊對無閥幫浦系統非線性動態響應之影響,國立成功大學機械所博士論文,2011。
[27]王文憲,閉迴路無閥流體驅動系統之實驗研究,國立成功大學機械所碩士論文,2011。
[28]洪孟漢,開迴路無閥幫浦系統之實驗研究,國立成功大學機械所碩士論文,2011。
[29]Forster FK, Bardell RL, Afromowitz MA, Sharma NR and Blanchard, A Design, fabrication and testing of fixed-valve micro-pumps. ASME, 39-44, 1995.
[30]Olsson A, Enoksson P, Stemme G, Stemme E, Micromachined flat-walled valveless diffuser pumps. Microelectromechanical Systems 6(2): 161-166, 1997.
[31]楊政穎, 林俊達, 李雨. A valve-less micro-pump based on asymmetric obstacles.第七屆奈米工程暨微系統技術研討會論文集台北,台灣,2003.
[32]吳咨亨.無閥門壓電微幫浦與微混合器之整合設計.應用力學硏究所.(國立臺灣大學, 台北,台灣, 2005)
[33]Li S, Chen S, Analytical analysis of a circular PZT actuator for valveless micropumps, Sensors and Actuators 104: 151–161, 2003.
[34]Fan B, Song G and Hussain F, Simulation of a piezoelectrically actuatedvalveless micropum, Smart Mater, 14: 400–405 , 2005.
[35]JOLIFE AB, Lucas chest compression system, heart thumper, URL, http://www.youtube.com/watch?v=znIidvdmqso88
[36]Jung E, Babbs CF, Lenhart S, Optimal strategy for cardiopulmonary resuscitation with continuous chest compression, J Acad Emerg Med 13:715–721, 2006.
[37]Hoeben RM, Experimental investigations into the role of impedance defined flow during CPR, Thesis (MSc), Eindhoven University of Technology, 2009.
[38]URL, http://www.eecp.com.tw/index.html
[39]URL, http://relativehumanity.tieus.com/web/cm/cm80.htm
[40]Mӓnner J, How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube, Dev Dynam 239:1035–1046, 2010.
[41]URL, http://commons.wikimedia.org/wiki/File:Piezo_bending_principle.jpg
[42]Lee CJ, Tsu ZK, Lei U, Hsu C.J. and Sheen H.J. A valveless micropump with asymmetric obstacles. The Sixteenth International Symposium on Transport Phenomena (ISTP-16)Prague, Czech, 2005.
[43]Michigan Instruments, The evolution of mechanical cardiopulmonary resuscitation (CPR) through the decades, URL, http://www.michiganinstruments.com/index.htm
[44]Kenner T, Moser M, Tanev I, Ono K, The Liebau-effect or on the optimal use of energy for the circulation of blood, Scripta Medica (Masaryk University, Brno) 73:9–14, 2000.