| 研究生: |
黃偉豪 Huang, Wei-Hao |
|---|---|
| 論文名稱: |
二維材料奈米管道薄膜應用於滲透能源轉換之探討 An Investigation of Osmotic Energy Conversion Using Nanochannel Membranes Reconstructed by Two-dimensional Materials |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 二硫化鉬 、氧化石墨烯 、奈米通道 、離子選擇性薄膜 、反向電滲析 、滲透能 、藍色能源 |
| 外文關鍵詞: | Molybdenum disulfide (MoS2), Graphene oxide (GO), Nanochannel, Ion-selective membrane, Reverse electrodialysis, bule energy harvesting |
| 相關次數: | 點閱:146 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
開發新能源是人類現在面臨解決能源短缺的主要問題,滲透能在這些正處於發展中的新能源當中是一種具有高潛力的藍色能源,係透過海水與淡水間的鹽類濃度差的吉布斯自由能轉換成電能。本研究中以真空抽濾法製造由二維材料二硫化鉬與氧化石墨烯所建構的奈米通道,以電雙層效應使奈米通道成為離子選擇性薄膜,透過反向電滲析將滲透能由離子選擇性薄膜擷取出,並比對離子以水平傳輸與垂直傳輸的差異,以及具有高水中穩定性的二硫化鉬與目前廣泛研究的氧化石墨烯的傳輸比較。本文結果中指出水平傳輸較垂直傳輸高110倍的輸出功率密度,水平傳輸最高可達到0.628 W/m^2的功率密度,且在水中有高穩定性能的二硫化鉬能產生比氧化石墨烯高1.7倍的功率密度,並於高濃度工作條件下,二硫化鉬優於氧化石墨烯,並能保持一定的工作效率。透過本研究能了解二維材料在開發滲透能的潛能,在未來開發出高效離子選擇性薄膜且穩定的裝置是滲透能發展的主軸。
Renewable energy plays a key role in the development of harvesting sustainable energy from natural resources. Reverse electrodialysis (RED) is a potential method to generate energy from renewable energy sources such as seawater. RED is based on Gibbs free energy of mixing on different salt concentration between seawater and freshwater (known as blue energy). In this study, two-dimensional materials such as molybdenum disulfide (MoS2) and graphene oxide (GO) are arranged layer by layer to fabricate high ion-selective membranes containing nanochannels for harvesting the blue energy. Two major objectives of this work are: first to study the difference in ionic transport phenomena when the membranes are placed by using horizontal (in-plane) and vertical (out-of-plane) setup, and second to compare power generation performance between MoS2 and GO membranes on RED. The result shows that the power generation of the horizontal transport is 0.628 W/m^2, which is 110 times higher than that of vertical transport. The power density of MoS2-membrane is 1.7 times higher than that of GO-membrane. The energy harvesting efficiency of MoS2-membrane is better than GO-membrane under the high concentration conditions. Overall, this work shows the potential application of the 2D-materials to harvest the blue energy using RED. The development of a highly efficient ion-selective membrane and its durability should be further studied for RED.
[1] D. Lindley. The energy should always work twice: waste heat from industrial plants and electricity-generating stations represents a huge amount of lost energy. David Lindley finds out what engineers and regulators need to do to get it back, Nature, 458 (2009), 138-142.
[2] M. Macha, S. Marion, V. V. Nandigana, and A. Radenovic. 2D materials as an emerging platform for nanopore-based power generation, Nat. Rev. Mater., 4 (2019), 588-605.
[3] J. Jang, Y. Kang, J.-H. Han, K. Jang, C.-M. Kim, and I. S. Kim. Developments and future prospects of reverse electrodialysis for salinity gradient power generation: Influence of ion exchange membranes and electrodes, Desalination, 491 (2020), 114540.
[4] D. Stein, M. Kruithof, and C. Dekker. Surface-charge-governed ion transport in nanofluidic channels, Phys. Rev. Lett., 93 (2004), 035901.
[5] K. Raidongia and J. Huang. Nanofluidic ion transport through reconstructed layered materials, J. Am. Chem. Soc., 134 (2012), 16528-16531.
[6] S. Kim, J. Nham, Y. S. Jeong, C. S. Lee, S. H. Ha, H. B. Park, and Y. J. Lee. Biomimetic selective ion transport through graphene oxide membranes functionalized with ion recognizing peptides, Chem. Mater., 27 (2015), 1255-1261.
[7] Z. Zhu, D. Wang, Y. Tian, and L. Jiang. Ion/molecule transportation in nanopores and nanochannels: From critical principles to diverse functions, J. Am. Chem. Soc., 141 (2019), 8658-8669.
[8] Z. Wang and B. Mi. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets, Environ. Sci. Technol., 51 (2017), 8229-8244.
[9] B. Al-Najar, C. D. Peters, H. Albuflasa, and N. P. Hankins. Pressure and osmotically driven membrane processes: A review of the benefits and production of nano-enhanced membranes for desalination, Desalination, 479 (2020), 114323.
[10] R. M. Wyss, T. Tian, K. Yazda, H. G. Park, and C.-J. Shih. Macroscopic Salt Rejection through Electrostatically Gated Nanoporous Graphene, Nano Lett, 19 (2019), 6400-6409.
[11] Y. Fu, S. Su, N. Zhang, Y. Wang, X. Guo, and J. Xue. Dehydration-determined ion selectivity of graphene subnanopores, ACS Appl. Mater. Interfaces, 12 (2020), 24281-24288.
[12] Y. Yang, X. Yang, L. Liang, Y. Gao, H. Cheng, X. Li, M. Zou, R. Ma, Q. Yuan, and X. Duan. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration, Science, 364 (2019), 1057-1062.
[13] Z. Zhang, W. Shen, L. Lin, M. Wang, N. Li, Z. Zheng, F. Liu, and L. Cao. Vertically Transported Graphene Oxide for High‐Performance Osmotic Energy Conversion, Adv. Sci., (2020), 2000286.
[14] Y. Li, W. Zhao, M. Weyland, S. Yuan, Y. Xia, H. Liu, M. Jian, J. Yang, C. D. Easton, and C. Selomulya. Thermally reduced nanoporous graphene oxide membrane for desalination, Environ. Sci. Technol., 53 (2019), 8314-8323.
[15] W. Guo, C. Cheng, Y. Wu, Y. Jiang, J. Gao, D. Li, and L. Jiang. Bio‐inspired two‐dimensional nanofluidic generators based on a layered graphene hydrogel membrane, Adv. Mater., 25 (2013), 6064-6068.
[16] R. Jafarzadeh, J. Azamat, H. Erfan-Niya, and M. Hosseini. Molecular insights into effective water desalination through functionalized nanoporous boron nitride nanosheet membranes, Appl. Surf. Sci., 471 (2019), 921-928.
[17] L. Liu, Y. Liu, Y. Qi, M. Song, L. Jiang, G. Fu, and J. Li. Hexagonal boron nitride with nanoslits as a membrane for water desalination: A molecular dynamics investigation, Sep. Purif. Technol., (2020), 117409.
[18] A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, and L. Bocquet. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494 (2013), 455-458.
[19] H. Li, T.-J. Ko, M. Lee, H.-S. Chung, S. S. Han, K. H. Oh, A. Sadmani, H. Kang, and Y. Jung. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination, Nano Lett, 19 (2019), 5194-5204.
[20] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic. Single-layer MoS2 nanopores as nanopower generators, Nature, 536 (2016), 197-200.
[21] Z. Wang, Q. Tu, S. Zheng, J. J. Urban, S. Li, and B. Mi. Understanding the Aqueous Stability and Filtration Capability of MoS2 Membranes, Nano Lett, 17 (2017), 7289-7298.
[22] C. Wang, F. F. Liu, Z. Tan, Y. M. Chen, W. C. Hu, and X. H. Xia. Fabrication of Bio‐Inspired 2D MOFs/PAA Hybrid Membrane for Asymmetric Ion Transport, Adv. Funct. Mater., (2019), 1908804.
[23] S. Xue, C. Ji, M. D. Kowal, J. C. Molas, C.-W. Lin, B. T. McVerry, C. L. Turner, W. H. Mak, M. Anderson, and M. Muni. Nanostructured graphene oxide composite membranes with ultrapermeability and mechanical robustness, Nano Lett, 20 (2020), 2209-2218.
[24] Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, and X. Feng. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators, Nat. Commun., 10 (2019), 1-9.
[25] V.-P. Mai and R.-J. Yang. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect, Appl. Energy, 274 (2020), 115294.
[26] V.-P. Mai and R.-J. Yang. Active control of salinity-based power generation in nanopores using thermal and pH effects, RSC Adv., 10 (2020), 18624-18631.
[27] C.-C. Chang and R.-J. Yang. Electrokinetic energy conversion in micrometer-length nanofluidic channels, Microfluid Nanofluidics, 9 (2010), 225-241.
[28] W. S. Hummers Jr and R. E. Offeman. Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958), 1339-1339.
[29] J. Chen, B. Yao, C. Li, and G. Shi. An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64 (2013), 225-229.
[30] K. Toda, R. Furue, and S. Hayami. Recent progress in applications of graphene oxide for gas sensing: A review, Analytica Chimica Acta, 878 (2015), 43-53.
[31] H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing. High-efficient synthesis of graphene oxide based on improved hummers method, Scientific Reports, 6 (2016), 36143.
[32] E. Aliyev, V. Filiz, M. M. Khan, Y. J. Lee, C. Abetz, and V. Abetz. Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris, Nanomaterials, 9 (2019), 1180.
[33] Z. Wang and B. Mi. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets, Environ Sci Technol, 51 (2017), 8229-8244.
[34] S. S. Chou, Y.-K. Huang, J. Kim, B. Kaehr, B. M. Foley, P. Lu, C. Dykstra, P. E. Hopkins, C. J. Brinker, and J. Huang. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution, Journal of the American Chemical Society, 137 (2015), 1742-1745.
[35] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla. Photoluminescence from chemically exfoliated MoS2, Nano Lett, 11 (2011), 5111-6.
[36] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang. Single‐Layer Semiconducting Nanosheets: High‐yield preparation and device fabrication, Angewandte Chemie International Edition, 50 (2011), 11093-11097.
[37] D. Lee, B. Lee, K. H. Park, H. J. Ryu, S. Jeon, and S. H. Hong. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling, Nano Lett, 15 (2015), 1238-1244.
[38] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, and Y. K. Gun'Ko. High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology, 3 (2008), 563.
[39] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, and G. Eda. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution, Nat. Mater., 12 (2013), 850-855.
[40] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience And Technology: A Collection Of Reviews From Nature Journals: World Scientific, (2010), 11-19.
[41] C.-H. Tsou, Q.-F. An, S.-C. Lo, M. De Guzman, W.-S. Hung, C.-C. Hu, K.-R. Lee, and J.-Y. Lai. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration, Journal of Membrane Science, 477 (2015), 93-100.
[42] L. Sun, H. Huang, and X. Peng. Laminar MoS2 membranes for molecule separation, Chem Commun (Camb), 49 (2013), 10718-20.
[43] F. H. van der Heyden, D. Stein, and C. Dekker. Streaming currents in a single nanofluidic channel, Physical Review Letters, 95 (2005), 116104.
[44] T.-C. Tsai, C.-W. Liu, and R.-J. Yang. Power generation by reverse electrodialysis in a microfluidic device with a Nafion ion-selective membrane, Micromachines, 7 (2016), 205.
[45] C. Wang, F. F. Liu, Z. Tan, Y. M. Chen, W. C. Hu, and X. H. Xia. Fabrication of Bio‐Inspired 2D MOFs/PAA Hybrid Membrane for Asymmetric Ion Transport, Advanced Functional Materials, (2019), 1908804.
[46] R. B. Schoch, J. Han, and P. Renaud. Transport phenomena in nanofluidics, Reviews of Modern Physics, 80 (2008), 839.
[47] B. J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, (2010),
[48] S. H. Behrens and D. G. Grier. The charge of glass and silica surfaces, The Journal of Chemical Physics, 115 (2001), 6716-6721.
[49] B. Konkena and S. Vasudevan. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through p K a measurements, The Journal of Physical Chemistry Letters, 3 (2012), 867-872.
[50] Z. Huang, Y. Zhang, T. Hayashida, Z. Ji, Y. He, M. Tsutsui, X. S. Miao, and M. Taniguchi. The impact of membrane surface charges on the ion transport in MoS2 nanopore power generators, Appl. Phys. Lett., 111 (2017), 263104.
[51] C.-C. Chang, R.-J. Yang, M. Wang, J.-J. Miau, and V. Lebiga. Liquid flow retardation in nanospaces due to electroviscosity: Electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO2 dissolution, Physics of Fluids, 24 (2012), 072001.
[52] D. Stein, M. Kruithof, and C. Dekker. Surface-charge-governed ion transport in nanofluidic channels, Physical Review Letters, 93 (2004), 035901.
[53] L. Bocquet and E. Charlaix. Nanofluidics, from bulk to interfaces, Chemical Society Reviews, 39 (2010), 1073-1095.
[54] A. J. Bard and L. R. Faulkner. Fundamentals and applications, Electrochemical Methods, 2 (2001), 580-632.
[55] C.-R. Chang, C.-H. Yeh, H.-C. Yeh, and R.-J. Yang, "Energy conversion from salinity gradient using microchip with nafion membrane," in International Journal of Modern Physics: Conference Series,42 (2016), 1660183.
[56] D.-K. Kim, C. Duan, Y.-F. Chen, and A. Majumdar. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluidics and Nanofluidics, 9 (2010), 1215-1224.
[57] P. Joensen, R. Frindt, and S. R. Morrison. Single-layer MoS2, Materials Research Bulletin, 21 (1986), 457-461.
[58] M. Yi and Z. Shen. A review on mechanical exfoliation for the scalable production of graphene, Journal of Materials Chemistry A, 3 (2015), 11700-11715.
[59] Z. Wang, A. von dem Bussche, Y. Qiu, T. M. Valentin, K. Gion, A. B. Kane, and R. H. Hurt. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media, Environ Sci Technol, 50 (2016), 7208-17.
[60] J. Kim, S. Kwon, D. H. Cho, B. Kang, H. Kwon, Y. Kim, S. O. Park, G. Y. Jung, E. Shin, W. G. Kim, H. Lee, G. H. Ryu, M. Choi, T. H. Kim, J. Oh, S. Park, S. K. Kwak, S. W. Yoon, D. Byun, Z. Lee, and C. Lee. Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control, Nat Commun, 6 (2015), 8294.
[61] T. Shedlovsky. The activity coefficients of LaCl3, CaCl2, KCl, NaCl and HCl in dilute aqueous solutions, Journal of the American Chemical Society, 72 (1950), 3680-3682.