簡易檢索 / 詳目顯示

研究生: 洪誌達
Hong, Jhih-Da
論文名稱: 使用離心製程改善電洞傳導物質在固態染料敏化太陽能電池中的孔洞填充情形
Improvement of Hole Transport Materials Pore Filling in Solid-State Dye-Sensitized Solar Cells by Centrifugation
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 固態染料敏化太陽能電池孔洞填充離心灌注
外文關鍵詞: Solid state dye sensitized solar cell, P3HT, Spiro-OMeTAD, Pore filling, infiltrate
相關次數: 點閱:65下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因電洞傳導物質(Hole Transport Matirial ,HTM)滲透能力不良,造成孔洞填充(pore-filling)情況不佳的問題,使固態染料敏化太陽能電池中TiO2光電極的最佳厚度受到限制(約2微米),導致光電轉換效率尚無法達到液態染料敏化太陽能電池的成效,故本研究利用離心灌注的製程改善孔洞填充不佳的情況,進而提升TiO2光電極最佳厚度。
    本研究中先針對不同的量測效率條件做測試,確保光電轉換效率值的準確性。而在改善孔洞填充方面,本研究中發展出一套離心灌注的製程取代傳統的旋轉塗佈製程,利用離心灌注所產生的力場,改善電洞傳導物質在TiO2光電極孔洞中的滲入情況,進而使提升光電極的最佳厚度、電洞傳導物質濃度。結果顯示,P3HT搭配染料D131的DSSC系統,使用離心灌注法最佳參數效率(厚度:4μm,P3HT:20mg/ml,η:1.71% )可比旋轉塗布法參數的效率 (厚度1.5μm,P3HT:15mg/ml,η:1.5%)提高14%;實驗亦探討其他染料搭配離心灌注法的影響,實驗中使用有機染料SQ2搭配P3HT組成DSSC,其光電極厚度增加後,經IPCE量測,其IPCE值提高的範圍較使用染料D131廣,結果顯示,使用離心灌注法最佳參數的效率 (厚度:4μm,P3HT:20mg/ml,η:1.26%),可比旋轉塗布法參數的效率(厚度1.5μm,P3HT:15mg/ml,η:0.9%)提高40%,經SEM、IPCE、UV-Visible證明,使用離心灌注法可在高光電極厚度時改善孔洞填充的情況。本研究亦將離心灌注法運用在小分子的電洞傳導物質Spiro-OMeTAD上,但提升效果不如P3HT顯著,推測是因為Spiro-OMeTAD的分子較P3HT小,故孔洞填充問題較不嚴重,導致使用離心灌注法的效果較不明顯。

    There are two factors limit the TiO2 potoelectrode thickness of solid state DSSC(only about 2μm) which will cause the efficiency lower than liquid electrolyte-based DSSC. The two factors are electron-hole recombination and incomplete filling of mesoporous TiO2 with HTM.
    In this study, we forcus on the problem of pore filling and solve the problem by using a new method - centrifugation that replace conventional spin coating for the deposition of the hole transport materials . By centrifugation, we can create a centrifugal force and let the HTM infiltrate into the mesoporous TiO2. The results show that in the devices using the P3HT and dye D131, the efficiency with the optimum parameters of centrifugation (TiO2 thickness:4μm, P3HT:20mg/ml,η:1.71%) is 14% higher than the efficiency with the parameters of spin coating( TiO2 thickness:1.5μm,P3HT:15mg/ml,η:1.5%).And we also study on the effect of devices with dye SQ2 and using centrifugation to deposit P3HT. The results show that the efficiency with the optimum parameters of centrifugation (η:1.26%) is 40% higher than the efficiency with the parameters of spin coating(η:0.9%).In this study we also use centrifugation apply to depositing Spiro-OMeTAD. The result shows that the effect of centrifugation in Spiro-OMeTAD is unapparent compare with P3HT. The reason for this result is that the molecular size of Spiro-OMeTAD is smaller than P3HT. So the problem of pore filling is not so serious for Spiro-OMeTAD compare with P3HT.

    摘要 I Abstract II 誌謝 III 總目錄 IV 表目錄 VII 圖目錄 IX 第 1 章 緒論 1 1-1 前言 1 1-2 太陽能電池發展現況 3 1-3 研究動機與目的 7 第 2 章 工作原理與文獻回顧 8 2-1 染料敏化太陽能電池 8 2-1.1染料敏化太陽能電池發展 8 2-1.2染料敏化太陽能電池之工作原理 14 2-1.3染料敏化太陽能電池結構介紹 15 2-1.4固態電解質 20 2-2 光電特性量測 29 2-2.1太陽能電池之總效率 29 2-2.2入射光子轉換效率量測系統 32 2-3文獻回顧 33 2-3.1準確量測固態染料敏化太陽能電池效率之方法 33 2-3.2 孔洞填充(pore filling) 37 2-3.2.1孔洞填充機制與其對電池元件的影響 37 2-3.2.2孔洞填充之分析方式 41 2-3.2.3孔洞填充之改善方式 46 第 3 章 實驗儀器與方法 49 3-1實驗藥品、規格/純度、供應商 49 3-2 實驗儀器 51 3-2.1 旋轉塗佈機(Spin coater)51 3-2.2高溫加熱板(Hot plate) 52 3-2.3表面輪廓儀(Alpha step)53 3-2.4 熱蒸鍍機(Thermal evaporator) 53 3-2.5 太陽光模擬器(Solar simulator) 54 3-2.6入射光子轉換效率量測系統(IPCE measurement)55 3-2.7紫外光/可見光光譜儀(UV-vis spectrophotometer) 56 3-2.8 Mili-Q超純水系統 57 3-3 實驗方法 58 3-3.1 TiO2漿料製備 58 3-3.2 TiO2光電極製備 58 3-3.3 染料分子吸附 59 3-3.4電解液製備 60 3-3.5 電池組裝 61 第 4 章 結果與討論 63 4-1 如何準確量測固態染料敏化太陽能電池效率 63 4-1.1 三種不同光電轉換效率的量測方式 63 4-1.2 不同量測方式下的光電轉換效率分析 65 4-1.3 光電轉換效率量測方式 67 4-2 使用離心製程灌注電洞傳導物質P3HT 70 4-2.2 最佳化電洞傳導物質P3HT濃度 80 4-2.3 離心灌注法在SQ2染料系統中的應用 86 4-3 使用離心製程灌注電洞傳導物質Spiro-OMeTAD 90 第 5 章 結論與建議 93 5-1 結論 93 5-2 建議 94 參考文獻 95

    [1] M. Grätzel, "Powering the Planet," Nature, vol. 403, p. 363, 2000.
    [2] M. Grätzel and B. O'Regan, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Films," Nature, vol. 353, p. 737, 1991.
    [3] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency," Science, vol. 334, pp. 629-34, Nov 4 2011.
    [4] H. Tsubomura, M. Matsumura, Y. Nomura, and T.Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, p. 402, 1976.
    [5] B. O. R. M. Grätzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal Films," Nature, vol. 353, p. 737, 1991.
    [6] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, et al., "Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania," Inorganic Chemistry, vol. 38, pp. 6298-6305, 1999.
    [7] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2Solar Cell," The Journal of Physical Chemistry B, vol. 107, pp. 8981-8987, 2003.
    [8] M. Grätzel, "Perspectives for Dye-sensitized Nanocrystalline Solar Cells," Progress In Photovoltaics: Research And Applications, vol. 8, p. 171, 2000.
    [9] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, et al., "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells," Journal of the American Chemical Society, vol. 123, pp. 1613-1624, Feb 28 2001.
    [10] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, et al., "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," J Am Chem Soc, vol. 127, pp. 16835-47, Dec 7 2005.
    [11] P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, and M. Grätzel, "Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells," Advanced Materials, vol. 15, pp. 2101-2104, 2003.
    [12] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha, and V. P. S. Perera, "A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex," J. Phys. D: Appl.Phys, vol. 31, p. 1492, 1998.
    [13] G. R. A. Kumara, M. Okuya, K. Murakami, S. Kaneko, V. V. Jayaweera, and K. Tennakone, "Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 183-185, 2004.
    [14] T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, "High efficiency of dye-sensitized solar cells based on metal-free indoline dyes," J Am Chem Soc, vol. 126, pp. 12218-9, Oct 6 2004.
    [15] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, et al., "High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness," Advanced Materials, vol. 18, pp. 1202-1205, 2006.
    [16] R. Plass, S. Pelet, J. Krueger, M. Grätzel, and U. Bach, "Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells," The Journal of Physical Chemistry B, vol. 106, pp. 7578-7580, 2002.
    [17] R. Vogel, P. Hoyer, and H. Weller, "Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors," American Chemical Society, vol. 98, p. 3183, 1994.
    [18] Y.-L. Lee and Y.-S. Lo, "Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe," Advanced Functional Materials, vol. 19, pp. 604-609, 2009.
    [19] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, et al., "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye," Chem Commun (Camb), pp. 5194-6, Nov 7 2008.
    [20] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel Flow cell system specically designed to test the efficiency of redox shuttles in Dye Sensitized Solar Cells," Sol. Energy Mater. & Sol. Cells, vol. 70, p. 85, 2001.
    [21] B. O'Regan, F. Lenzmann, R. Muis, and J. Wienke, "A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2and CuSCN: Analysis of Pore Filling and IV Characteristics," Chemistry of Materials, vol. 14, pp. 5023-5029, 2002.
    [22] J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N. L. Cevey-Ha, C. Yi, et al., "Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells," J Am Chem Soc, vol. 133, pp. 18042-5, Nov 16 2011.
    [23] T. Leijtens, I. K. Ding, T. Giovenzana, J. T. Bloking, M. D. McGehee, and A. Sellinger, "Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells," ACS Nano, vol. 6, pp. 1455-62, Feb 28 2012.
    [24] P. Docampo, A. Hey, S. Guldin, R. Gunning, U. Steiner, and H. J. Snaith, "Pore Filling of Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells Determined Via Optical Reflectometry," Advanced Functional Materials, vol. 22, pp. 5010-5019, Dec 5 2012.
    [25] J. Melas-Kyriazi, I. K. Ding, A. Marchioro, A. Punzi, B. E. Hardin, G. F. Burkhard, et al., "The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells," Advanced Energy Materials, vol. 1, pp. 407-414, 2011.
    [26] I. K. Ding, J. Melas-Kyriazi, N.-L. Cevey-Ha, K. G. Chittibabu, S. M. Zakeeruddin, M. Grätzel, et al., "Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading," Organic Electronics, vol. 11, pp. 1217-1222, 2010.
    [27] I. K. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, et al., "Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance," Advanced Functional Materials, vol. 19, pp. 2431-2436, 2009.
    [28] U. B. Cappel, E. A. Gibson, A. Hagfeldt, and G. Boschloo, "Dye Regeneration by Spiro-MeOTAD in Solid State Dye-Sensitized Solar Cells Studied by Photoinduced Absorption Spectroscopy and Spectroelectrochemistry," The Journal of Physical Chemistry C, vol. 113, pp. 6275-6281, 2009.
    [29] H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S. M. Zakeeruddin, and M. Gratzel, "Charge collection and pore filling in solid-state dye-sensitized solar cells," Nanotechnology, vol. 19, p. 424003, Oct 22 2008.
    [30] H. J. Snaith and M. Grätzel, "Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro-MeOTAD," Advanced Materials, vol. 19, pp. 3643-3647, 2007.
    [31] L. Schmidt-Mende and M. Grätzel, "TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells," Thin Solid Films, vol. 500, pp. 296-301, 2006.
    [32] W. Zhang, R. Zhu, F. Li, Q. Wang, and B. Liu, "High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter," The Journal of Physical Chemistry C, vol. 115, pp. 7038-7043, 2011.
    [33] W.-C. Chen, C.-Y. Chen, C.-G. Wu, K.-C. Ho, and L. Wang, "Effect of structural compatibility of dye and hole transport material on performance of solid-state dye-sensitized solar cells," Journal of Power Sources, vol. 214, pp. 113-118, 2012.
    [34] H. Wang, G. Liu, X. Li, P. Xiang, Z. Ku, Y. Rong, et al., "Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode," Energy & Environmental Science, vol. 4, p. 2025, 2011.
    [35] G. G. R. Sai Santosh Kumar, A. Abrusci, H.J. Snaith, "Improved performances in annealed P3HT-based dye
    sensitized solar cells (DSSC): a detailed morphological and
    spectroscopic investigation," Renewable Energy and the Environment Technical Digest ,p. PThD6.pdf, 2011.
    [36] S. J. Moon, E. Baranoff, S. M. Zakeeruddin, C. Y. Yeh, E. W. Diau, M. Gratzel, et al., "Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye," Chem Commun (Camb), vol. 47, pp. 8244-6, Aug 7 2011.
    [37] H. J. Lee, H. C. Leventis, S. A. Haque, T. Torres, M. Grätzel, and M. K. Nazeeruddin, "Panchromatic response composed of hybrid visible-light absorbing polymers and near-IR absorbing dyes for nanocrystalline TiO2-based solid-state solar cells," Journal of Power Sources, vol. 196, pp. 596-599, 2011.
    [38] A. Abrusci, R. S. Santosh Kumar, M. Al-Hashimi, M. Heeney, A. Petrozza, and H. J. Snaith, "Influence of Ion Induced Local Coulomb Field and Polarity on Charge Generation and Efficiency in Poly(3-Hexylthiophene)-Based Solid-State Dye-Sensitized Solar Cells," Advanced Functional Materials, vol. 21, pp. 2571-2579, 2011.
    [39] W. Zhang, R. Zhu, L. Ke, X. Liu, B. Liu, and S. Ramakrishna, "Anatase mesoporous TiO2 nanofibers with high surface area for solid-state dye-sensitized solar cells," Small, vol. 6, pp. 2176-82, Oct 4 2010.
    [40] R. Zhu, C.-Y. Jiang, B. Liu, and S. Ramakrishna, "Highly Efficient Nanoporous TiO2-Polythiophene Hybrid Solar Cells Based on Interfacial Modification Using a Metal-Free Organic Dye," Advanced Materials, vol. 21, pp. 994-1000, 2009.
    [41] K.-J. Jiang, K. Manseki, Y.-H. Yu, N. Masaki, K. Suzuki, Y.-l. Song, et al., "Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT," Advanced Functional Materials, vol. 19, pp. 2481-2485, 2009.
    [42] Y. Noma, T. Kado, D. Ogata, Y. Hara, and S. Hayase, "Surface State Passivation Effect for Nanoporous TiO2Electrode Evaluated by Thermally Stimulated Current and Application to All-Solid State Dye-Sensitized Solar Cells," Japanese Journal of Applied Physics, vol. 47, pp. 505-508, 2008.
    [43] G. K. Mor, S. Kim, M. Paulose, O. K. Varghese, K. Shankar, J. Basham, et al., "Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells," Nano Lett, vol. 9, pp. 4250-7, Dec 2009.
    [44] X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, and S. Ramakrishna, "An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material," Adv Mater, vol. 22, pp. E150-5, May 25 2010.
    [45] U. Bach, D. Lupo, P. Comte, J. E. Moser, F.Weissörtel, J. Salbeck, et al., "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies," Nature, vol. 395, 1998.
    [46] L. Schmidt-Mende, U.B., R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, et al., "Organic Dye for Highly Efficient Solid-State DSSC," Advanced Materials, vol. 17, p. 813, 2005.
    [47] H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, and M. Gratzel, "Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture," Nano Lett, vol. 7, pp. 3372-6, Nov 2007.
    [48] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, and R. D. McCullough, "Regioregular, Head-to-Tail Coupled Poly(3-alkylthiophenes) Made Easy by the GRIM Method: Investigation of the Reaction and the Origin of Regioselectivity," Macromolecules, vol. 34, pp. 4324-4333, 2001.
    [49] M. e. al., "merhod of forming poly-(3-subsituted) thiophenes," 2000.
    [50] D. Poplavskyy and J. Nelson, "Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound," Journal of Applied Physics, vol. 93, p. 341, 2003.
    [51] . M. Peter, "The r tzel Cell: Where Next?," The Journal of Physical Chemistry Letters, vol. 2, pp. 1861-1867, 2011.
    [52] H. J. Snaith, "How should you measure your excitonic solar cells?," Energy & Environmental Science, vol. 5, p. 6513, 2012.
    [53] M. Grätzel, "Dye-Sensitized Solid-State Heterojunction Solar Cells," MRS BULLETIN, vol. 30, 2005.
    [54] E. M. J. Johansson, S. Pradhan, E. Wang, E. L. Unger, A. Hagfeldt, and M. R. Andersson, "Efficient infiltration of low molecular weight polymer in nanoporous TiO2," Chemical Physics Letters, vol. 502, pp. 225-230, 2011.
    [55] E. M. J. Johansson, L. Yang, E. Gabrielsson, P. W. Lohse, G. Boschloo, L. Sun, et al., "Combining a Small Hole-Conductor Molecule for Efficient Dye Regeneration and a Hole-Conducting Polymer in a Solid-State Dye-Sensitized Solar Cell," The Journal of Physical Chemistry C, vol. 116, pp. 18070-18078, 2012.
    沈育仁,「CdS量子點敏化劑及高分子/奈米粒子複合膠態電解質在染料敏化太陽能電池應用之研究」成功大學化學工程系博士論文 (2008)
    陳政廷,「混合有機色素分子共敏化對色素敏化太陽電池光電轉換效率的影響」成功大學化學工程系碩士論文 (2008)。
    林亞秀,「膠態雞尾酒有機染料敏化太陽能電池之研究」成功大學化學工程系碩士論文 (2009)。
    葉韋宏,「固態雞尾酒有機染料敏化太陽能電池之研究」成功大學化學工程系碩士論文 (2011)。
    李威群,「雞尾酒有機染料在膠態染料敏化太陽能電池之應用」成功 大學化學工程系碩士論文 (2012)。

    下載圖示 校內:2018-07-26公開
    校外:2018-07-26公開
    QR CODE