| 研究生: |
黃新祐 Huang, Hsin-Yu |
|---|---|
| 論文名稱: |
結合攝影測量與離散裂隙網路模型分析關子嶺裂隙特性及連通性 Combining photogrammetry with discrete fracture network model to analyze fracture characteristics and connectivity in Guanzihling |
| 指導教授: |
林冠瑋
Lin, Guan-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 地熱開發 、關子嶺 、離散裂隙網路(DFN) 、運動回復結構(SfM) 、Discontinuity Set Extracter |
| 外文關鍵詞: | Geothermal, Guanziling, Discrete Fracture Network (DFN), Structure from Motion (SfM), Discontinuity Set Extractor (DSE) |
| 相關次數: | 點閱:2 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來為響應全球淨零碳排趨勢,臺灣積極推動再生能源發展,其中地熱能因具備穩定基載電力特性而備受重視。臺南關子嶺地區除擁有豐富的溫泉資源外,亦有多處天然氣與熱水湧出,顯示地底下蘊含活躍的地熱系統。然而此區域近地表地層主要由中新世晚期至更新世早期的頁岩或泥質砂岩組成,地層基質的孔隙率與滲透率隨著深度增加而顯著降低,使得地熱流體的移棲與儲存必須仰賴構造運動所產生的「裂隙系統」。由於關子嶺地區地質構造發達,受枕頭山斷層、六重溪斷層以及連續褶皺構造(如前大埔向斜、南寮背斜)影響,裂隙發育程度成為評估地熱儲集層效益的關鍵,故本研究選擇此地作為研究區域,旨在探討裂隙分布特徵及其對流體傳輸之影響。
本研究使用商業軟體Pix4Dmatic將以智慧型手機拍攝的野外露頭影像,轉換為高密度三維點雲,過程中使用到運動回復結構 (Structure from Motion, SfM) 與多視立體 (Multi-view Stereo, MVS) 等技術。前者透過多張高重疊度影像計算相機位置與姿態並生成稀疏點雲,後者則補強細節以生成密集點雲。相較於傳統人工測量或近景影像測量 (CRDP),此方法突破了地形陡峭與露頭可及性之限制,具備更高的機動性與效率。之後利用開源程式Discontinuity Set Extractor(DSE)對密集點雲進行半自動不連續面辨識,提取裂隙之位態與密度等資訊。經對比DSE辨識結果及野外實地量測的裂隙資訊,顯示雙方結果高度一致,但DSE能提供更為全面且具統計代表性的數據,故以DSE辨識結果為主進行離散裂隙模擬及區域應力歷史解釋。最終,離散裂隙模擬使用開源程式ADFNE進行,將裂隙參數轉化為三維離散裂隙網路(DFN)模型,並計算線裂隙強度P10與體積裂隙強度P32以評估連通性。研究結果揭示了部分區域具備高強度正交裂隙網路與優異的等效裂隙孔隙率,期能透過此裂隙發育特性之解析,了解地下流體通道機制,為後續關子嶺地區地熱資源開發提供科學依據。
To support Taiwan's net-zero carbon goals, this study investigates the geothermal potential of the Guanziling area in Tainan, where abundant hot springs and gas seepages indicate an active subsurface system. Because the local Late Miocene to Early Pleistocene stratigraphy consists of low-permeability shale and muddy sandstone, geothermal fluid storage and transport rely heavily on fracture systems formed by regional tectonic activity, including the Zhentoushan and Liuchongxi faults.
To overcome the limitations of steep terrain, this research employed smartphone-based photogrammetry and Pix4Dmatic software, utilizing Structure from Motion (SfM) and Multi-view Stereo (MVS) to generate high-density 3D point clouds. The Discontinuity Set Extractor (DSE) was then used to semi-automatically extract fracture attitudes and density, providing more comprehensive data than traditional manual surveys. Finally, these parameters were integrated into the ADFNE program to construct 3D Discrete Fracture Network (DFN) models.
The results reveal specific zones with high-intensity orthogonal fracture networks and an equivalent fracture porosity of 2.0% to 2.5%. By elucidating these subsurface fluid pathways, this study provides a critical scientific basis for future geothermal resource development in the Guanziling region.
邵屏華、高銘健(2009)。五萬分之一臺灣地質圖及說明書,第四十五號,中埔。經濟部地質調查及礦業管理中心。
陳肇夏(1975)。臺灣溫泉成因與地熱探勘之我見。地質第一卷,第二期,第107-117頁。
張竝瑜、梁俊煌、蔡瀛逸、蔡利局、陳煜斌、林秀雄(2007)。關子嶺溫泉泉質特性與可能形成機制之初步研究。2007年休閒暨溫泉產業經營研討會論文集。 http://ir.cnu.edu.tw/handle/310902800/24386
張憲卿(2008)。五萬分之一臺灣地質圖及說明書,第四十四號,嘉義。經濟部地質調查及礦業管理中心。
黃詠智(2022)。應用先進測繪技術探討岩體不連續面幾何參數及其空間變異〔碩士論文,國立臺灣大學〕。https://doi.org/10.6342/NTU202200307
經濟部地質調查及礦業管理中心、國立成功大學(2023)。臺南市關子嶺與嘉義縣中崙地區地下三維地質模型建置(1/2)期末報告。經濟部地質調查及礦業管理中心報告,112-15。
臺灣應力地圖(2022)。[線上資料]。取自 https://dataservices.gfz-potsdam.de/wsm/showshort.php?id=20c4474e-724b-11ec-958d-ed2b0fcbcc9b
魏聲焜、彭達糊(1982)。臺南縣關子嶺三號探井地下地質報告。中油公司內部報告,26頁。
譚志豪、冀樹勇(2023)。臺灣地熱電廠開發實務。營建知訊,第486期。
Andersson, J., & Dverstorp, B. (1987). Conditional simulations of fluid flow in three-dimensional networks of discrete fractures. Water Resources Research, 23(10), 1876–1886. https://doi.org/10.1029/WR023i010p01876
Banerjee, A., Dhillon, I. S., Ghosh, J., & Sra, S. (2005). Clustering on the unit hypersphere using von Mises-Fisher distributions. Journal of Machine Learning Research, 6, 1345-1382.
Barton, N., Bandis, S., & Bakhtar, K. (1985). Strength, deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 22(3), 121–140. https://doi.org/10.1016/0148-9062(85)93227-9
Berkowitz, B., & Adler, P. M. (1998). Stereological analysis of fracture network structure in geological formations. Journal of Geophysical Research: Solid Earth, 103(B7), 15339-15360. https://doi.org/10.1029/98JB01072
Berkowitz, B. (2002). Characterizing flow and transport in fractured geological media: A review. Advances in Water Resources, 25(8–12), 861–884. https://doi.org/10.1016/S0309-1708(02)00042-8
Dershowitz, W. S. (1996). Joint network modelling with FracMan. https://www.osti.gov/servlets/purl/570115-NuOmjA/webviewable/&authuser=1
Dershowitz, W. S., & Einstein, H. H. (1987, August). Three dimensional flow modeling in jointed rock masses [Conference paper]. 6th ISRM Congress, Montreal, Canada.
Dershowitz, W. S., & Einstein, H. H. (1988). Characterizing rock joint geometry with joint system models. Rock Mechanics and Rock Engineering, 21(1), 21-51.
Dershowitz, W. S., & Herda, H. H. (1992). Interpretation of fracture spacing and intensity. In J. R. Tillerson & W. R. Wawersik (Eds.), Proceedings of the 33rd U.S. Symposium on Rock Mechanics (pp. 757-766). Balkema.
Elhag, M., & Alshamsi, A. (2019). Trajectory of fracture zone in the United Arab Emirates using remote sensing technique. Geoscientific Instrumentation, Methods and Data Systems, 8(1), 45-52. https://doi.org/10.5194/gi-8-45-2019
Elsworth, D. (1986). A model to evaluate the transient hydraulic response of three-dimensional sparsely fractured rock masses. Water Resources Research, 22(13), 1809–1819. https://doi.org/10.1029/WR022i013p01809
Fadakar Alghalandis, Y. (2017). ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications. Computers & Geosciences, 102, 1-11. https://doi.org/10.1016/j.cageo.2017.02.002
Gao, Z., Doi, A., Sakakibara, K., Hosokawa, T., & Harata, M. (2021). Three-dimensional measurement and three-dimensional printing of giant coastal rocks. ISPRS International Journal of Geo-Information, 10(6), 404. https://doi.org/10.3390/ijgi10060404
Gläser, D., Helmig, R., Flemisch, B., & Class, H. (2020). Frackit: A Python package for the generation of discrete fracture networks. Journal of Open Source Software, 5(52), 2291. https://doi.org/10.21105/joss.02291
Holdsworth, C. M., McCaffrey, K. J. W., Dempsey, E., Roberts, A. G., Hardman, K., Morton, A., ... & Jones, R. R. (2020). Natural fracture propping and occlusion by dolomite in a fractured carbonate reservoir analogue. Journal of the Geological Society, 177(5), 1041-1056. https://doi.org/10.1144/jgs2019-142
Howard, J. H. (1990). Jointing in sedimentary rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(5), 320-329. https://doi.org/10.1016/0148-9062(90)91272-9
Hsu, C. Y., & Wey, S. K. (1983). Structural geology in Chiayi foothills, Taiwan. Petroleum Geology of Taiwan, 19, 17-28.
Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., & Viswanathan, H. S. (2015). dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Computers & Geosciences, 84, 10-19. https://doi.org/10.1016/j.cageo.2015.08.001
IPCC. (2011). IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press.
Jancosek, M., & Pajdla, T. (2011). Multi-view reconstruction preserving weakly-supported surfaces. CVPR 2011 (pp. 3121-3128). IEEE. https://doi.org/10.1109/CVPR.2011.5995693
Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283–353. https://doi.org/10.1016/S1365-1609(03)00013-3
Karra, S., O'Malley, D., Hyman, J. D., Viswanathan, H. S., & Srinivasan, G. (2018). Modeling flow and transport in fracture networks using graphs. Physical Review E, 97(3), 033304. https://doi.org/10.1103/PhysRevE.97.033304
King, R., & Miller, M. (2010). Multiuse 'Triple Play' Hot Sedimentary Aquifer (HSA) potential of Victoria, Australia. Proceedings World Geothermal Congress 2010.
Laurentini, A. (1994). The visual hull concept for silhouette-based image understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2), 150-162. https://doi.org/10.1109/34.273735
Lei, Q., Latham, J.-P., & Tsang, C.-F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks: A state-of-the-art review. Computers and Geotechnics, 85, 151–176. https://doi.org/10.1016/j.compgeo.2016.12.024
Li, S. C., Zhou, Y., Li, L. P., Lin, P., Xu, Z. H., & Shi, S. S. (2012). Risk assessment of water inrush in karst tunnels based on attribute synthetic evaluation system. Tunnelling and Underground Space Technology, 29, 169–176. https://doi.org/10.1016/j.tust.2013.05.001
Long, J. C. S., Remer, J. S., Wilson, C. R., & Witherspoon, P. A. (1982). Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18(3), 645–658. https://doi.org/10.1029/WR018i003p00645
Long, J. C. S., Gilmour, P., & Witherspoon, P. A. (1985). A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resources Research, 21(8), 1105–1115. https://doi.org/10.1029/WR021i008p01105
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
Mammoliti, E., Cappelletti, D., Tavani, S., & Pinti, D. L. (2023). 3D Discrete Fracture Network Modelling from UAV Imagery Coupled with Tracer Tests to Assess Fracture Conductivity in an Unstable Rock Slope: Implications for Rockfall Phenomena. Remote Sensing, 15(5), 1222. https://doi.org/10.3390/rs15051222
McClure, M. W., & Horne, R. N. (2013). Discrete fracture network modeling of hydraulic stimulation: Coupling flow and geomechanics. SpringerBriefs in Earth Sciences. Springer.
Nelson, R. A. (2001). Geologic analysis of naturally fractured reservoirs (2nd ed.). Gulf Professional Publishing.
Ovaskainen, N. (2024). Available open source software for three-dimensional fracture characterization and modelling. Open File Research Report 46/2024.Geological Survey of Finland. https://www.researchgate.net/publication/381655313
Riquelme, A. J., Abellán, A., Tomás, R., & Jaboyedoff, M. (2014). A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Computers & Geosciences, 68, 38-52. https://doi.org/10.1016/j.cageo.2014.03.014
Rohrbaugh, M. B., Dunne, W. M., & Mauldon, M. (2002). Estimating fracture trace intensity, density, and mean length using circular scan lines and windows. AAPG Bulletin, 86(12), 2087-2102.
Rutqvist, J. (2012). The geomechanics of CO2 storage in deep sedimentary formations. Geotechnical and Geological Engineering, 30(3), 525–551. https://doi.org/10.1007/s10706-011-9491-0
Sanderson, D. J., & Nixon, C. W. (2015). The use of topology in fracture network characterization. Journal of Structural Geology, 72, 55-66. https://doi.org/10.1016/j.jsg.2015.01.005
Singh, K., Srinivasan, G., & Viswanathan, H. (2019). Fractured Basement Characterization: An Integrated Approach for Play to Prospect Analysis and Resource Assessment of Basement Plays. the SPE Oil and Gas India Conference and Exhibition, Mumbai, India. https://doi.org/10.2118/194627-MS
Singhal, B. B. S., & Gupta, R. P. (2010). Applied hydrogeology of fractured rocks (2nd ed.). Springer. https://doi.org/10.1007/978-90-481-8799-7
Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2), 189-210. https://doi.org/10.1007/s11263-007-0107-3
Stearns, D. W. (1968). Certain aspects of fractures in naturally deformed rock, in Riecker, R. E. (ed.), NSF Advanced Science Seminar in Rock Mechanics, Air Force Cambridge Research Laboratories.
Strieder, A. J., & Buffon, E. (2001). Fracture System Analysis Aided By Gpr: Applications On Dimension Stone Quarries Modelling. 63rd EAGE Conference & Exhibition. https://doi.org/10.3997/2214-4609-pdb.217.043
Watkins, H., Bond, C. E., Healy, D., & Butler, R. W. (2015). Appraisal of fracture sampling methods and a new workflow for characterization of fracture networks at outcrop. Journal of Structural Geology, 72, 67-82. https://doi.org/10.1016/j.jsg.2015.02.001
Welsch, B., & Lüthje, M. (2022). DFM Generator. Zenodo. https://doi.org/10.5281/zenodo.8066608
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
Zimmerman, R. W., & Bodvarsson, G. S. (1996). Effective transmissivity of two-dimensional fracture networks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(4), 433–438. https://doi.org/10.1016/0148-9062(95)00067-4