| 研究生: |
謝芝庭 Hsieh, Chih-Ting |
|---|---|
| 論文名稱: |
基於資料深度之多變量製程能力指標 Multivariate Process Capability Index Based on Data Depth Concept |
| 指導教授: |
李俊毅
Li, Chung-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 資料深度 、修正規格區域 、多變量製程能力指標 |
| 外文關鍵詞: | data depth, modified tolerance region, multivariate process capability index |
| 相關次數: | 點閱:108 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業製程複雜度增加,影響製程表現之品質特性不再只有一種,為同時考量多種品質特性,從而發展出多變量製程能力指標(Multivariate Process Capability Index,MPCI)。目前已有多位學者提出相關多變量製程能力指標,但多假設產品品質特性為常態,然而,許多工業製程之品質特性無法滿足此假設,因此,本研究藉由資料深度(Data Depth)概念說明如何定義製程資料規格區域,進而提出兩個無須分佈假設之多變量製程能力指標。本研究將分別藉由統計模擬及數值實例,評估提出方法的表現及說明如何運用本研究提出之指標來評估製程的表現。
Generally, an industrial product has more than one quality characteristic. In order to establish performance measures for evaluating the capability of a multivariate manufacturing process, several multivariate process capability indices have been developed in the past. Most of the proposed in the literature MPCIs are defined under an assumption, that process quality characteristics are normally distributed. However, this assumption may not hold in practice In this research, based on the data depth concept, we proposed two multivariate process capability indices, which could be used regardless on data distribution. Finally, simulation results show that our proposed indices outperform than existing model. A numerical example further demonstrate the usefulness of the proposed indices.
1.Chan, L. K., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175.
2.Ciupke, K. (2016). Multivariate process capability index based on data depth concept. Quality and Reliability Engineering International, 32(7), 2443-2453.
3.Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American statistical Association, 82(397), 171-185.
4.Einmahl, J. H., Li, J., & Liu, R. Y. (2015). Bridging centrality and extremity: Refining empirical data depth using extreme value statistics. The Annals of Statistics, 43(6), 2738-2765.
5.González, I., & Sánchez, I. (2009). Capability indices and nonconforming proportion in univariate and multivariate processes. The International Journal of Advanced Manufacturing Technology, 44(9-10), 1036-1050.
6.Grau, D. (2007). Multivariate capability indices for processes with asymmetric tolerances. Quality Technology & Quantitative Management, 4(4), 471-488.
7.Joseph M. Juran, Frank M. Gryna, Richard S. Bingham (1974) Quality control handbook. McGraw-Hill, New York.
8.Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52.
9.Mosler, K.(2013). Depth statistics. In Robustness and complex data structures. Festschrift in Honour of Ursula Gather, Springer, Berlin, 17-34.
10.Li, J., & Liu, R. Y. (2008). Multivariate spacings based on data depth: I. Construction of nonparametric multivariate tolerance regions. The Annals of Statistics, 36(3), 1299-1323.
11.Pan, J. N., & Lee, C. Y. (2010). New capability indices for evaluating the performance of multivariate manufacturing processes. Quality and Reliability Engineering International, 26(1), 3-15.
12.Pearn, W. L., Kotz, S., & Johnson, N. L. (1992). Distributional and inferential properties of process capability indexes. Journal of Quality Technology, 24(4), 216-231.
13.Taam, W., Subbaiah, P., & Liddy, J. W. (1993). A note on multivariate capability indices. Journal of applied statistics, 20(3), 339-351.
14.Yeh, A. B., & Chen, H. (2001). A nonparametric multivariate process capability index. International Journal of Modelling and Simulation, 21(3), 218-223.
15.Zuo, Y., & Serfling, R. (2000). General notions of statistical depth function. Annals of statistics, 28(2), 461-482.
16.石維謙. (2012). 望目及望小特性下, 非常態多變量製程能力指標之制定與評估. 成功大學統計學系學位論文, 1-62.