簡易檢索 / 詳目顯示

研究生: 連翊呈
Lian, Yi-Cheng
論文名稱: 不同外邊長方形管在不同彎曲方向循環彎曲負載下行為之實驗研究
Experimental Study on the Behavior of Square Tubes with Different Outer Side Length under Cyclic Bending in Different Bending Directions
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 83
中文關鍵詞: 6063-T5鋁合金方形管不同外邊長不同彎曲方向循環彎曲彎矩曲率外邊長變化循環至斷裂圈數
外文關鍵詞: 6063-T5 aluminum alloy square tube, different outer side lengths, different bending directions, cyclic bending, moment, curvature, outer side length variation, number of cycles required to initiate fracture
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討不同外邊長的6063-T5鋁合金方形管在不同彎曲方向對稱控制曲率循環彎曲負載下的響應與失效,其中以彎矩-曲率關係與外邊長變化-曲率關係來呈現響應,而以控制曲率-循環至斷裂圈數關係來呈現失效。本研究不同的外邊長有:20、30、40與50 mm,而不同的彎曲方向有:0º、22.5º和45º,至於方形管的壁厚皆1 mm。
    從實驗彎矩-曲率關係中發現,所有方形管皆有循環硬化的現象發生,但最後都會形成一個穩定的彈塑性迴圈。當固定彎曲方向時,在相同的控制曲率情況下,隨著外邊長尺寸的增加,其彎矩值會相對的增加;而當固定外邊長尺寸時,彎曲方向越大彎矩值就越大。從外邊長變化-曲率關係中發現,不論是固定彎曲方向或外邊長尺寸時,隨著循環圈數的增加,該關係都會呈現對稱、棘齒與增加的趨勢。且外邊長尺寸或彎曲方向越大時,外邊長變化就越大。在控制曲率-循環至斷裂圈數關係中發現,當外邊長尺寸越大時,其循環至斷裂的圈數就越小;當彎曲方向越大時,循環至斷裂的圈數就越大。此外,控制曲率-循環至斷裂圈數關係在雙對數座標關係圖中可以發現,在固定彎曲方向時,四種外邊長會對應出四條直線。最後,本文統整出理論方程式來描述不同外邊長的6063-T5鋁合金方形管在不同彎曲方向對稱曲率控制循環彎曲負載下的控制曲率-循環至斷裂圈數關係,並且將理論分析與實驗結果比較後發現,兩者數據非常的接近,表示理論能夠合理的描述實驗結果。

    The main focus of this paper is to investigate the response and failure of 6063-T5 aluminum alloy square tubes with different outer side length under symmetric curvature-controlled cyclic bending loads in various bending directions. The response is presented through the moment-curvature relationship and the outer side length variation-curvature relationship, while the failure is represented by the relationship between controlled curvature and the number of cycles required to initiate fracture. The different outer side lengths studied are 20, 30, 40, and 50 mm, with bending directions of 0º, 22.5º, and 45º. The wall thickness of the square tubes is 1 mm.
    From the experimental moment-curvature relationships, it was found that all square tubes exhibit cyclic hardening, eventually forming a stable elastic-plastic loop. When the bending direction is fixed, the moment value increases with the outer side length under the same controlled curvature condition. When the outer side length is fixed, the moment value increases as the bending direction increases. The outer side length variation-curvature relationship shows that, regardless of whether the bending direction or outer side length is fixed, the relationship becomes symmetrical, ratcheting, and increases with the number of cycles. Furthermore, the larger the outer side length or bending direction, the greater the outer side length variation. In the controlled curvature-number of cycles required to initiate fracture relationship, it was found that as the outer side length increases, the number of cycles required to initiate fracture decreases. Conversely, as the bending direction increases, the number of cycles required to initiate fracture also increases. Additionally, in the double logarithmic plot of the controlled curvature-number of cycles required to initiate fracture relationship, four straight lines correspond to the four outer side lengths for a fixed bending direction. Finally, the study derives theoretical equations to describe the relationship between controlled curvature and the number of cycles required to initiate fracture for 6063-T5 aluminum alloy square tubes with different outer side lengths under symmetric curvature-controlled cyclic bending loads in different bending directions. A comparison of theoretical analysis and experimental results shows that the data are very close, indicating that the theory can reasonably describe the experimental results.

    摘要 iii 誌謝 xxii 目錄 xxiii 表目錄 xxv 圖目錄 xxvi 符號說明 xxix 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-3研究目的 9 第二章 實驗設備 10 2-1 彎管實驗機 10 2-2 油壓伺服控制系統 15 2-3 監控系統 21 2-4 檢測系統 24 第三章 實驗原理 26 3-1 實驗材料與規格 26 3-2 實驗原理與方法 28 3-3 實驗操作程序 29 3-4 實驗數據推演與統整 31 第四章 實驗結果與理論分析 37 4-1 實驗結果 37 4-2 方形管變形模式 37 4-3 彎矩(M)-曲率(κ)關係 40 4-4 外邊長變化(∆l/lo)-曲率(κ)關係 42 4-5 控制曲率(κc)-循環至斷裂圈數(Nf)關係 44 4-6 理論分析 47 第五章 結論 52 參考文獻 53

    1. Brazier, L. G. (1927). On the flexure of thin cylindrical shells and other" thin" sections. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 116(773), 104-114.
    2. Kyriakides, S., and Shaw, P. K. (1982). Response and stability of elastoplastic circular pipes under combined bending and external pressure. International Journal of Solids and Structures, 18(11), 957-973.
    3. Shaw, P. K., and Kyriakides, S. (1985). Inelastic analysis of thin-walled tubes under cyclic bending. International Journal of Solids and Structures, 21(11), 1073-1100.
    4. Kyriakides, S., and Shaw, P. K. (1987). Inelastic buckling of tubes under cyclic bending. Journal of Pressure Vessel Technology, 109(2), pp. 169-178.
    5. Corona, E., and Kyriakides, S. (1988). On the collapse of inelastic tubes under combined bending and pressure. International Journal of Solids and Structures, 24(5), 505-535.
    6. Corona, E., and Kyriakides, S. (1991). An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure. Thin-Walled Structures, 12(3), 229-263.
    7. Corona, E., and Vaze, S. P. (1996). Buckling of elastic-plastic square tubes under bending. International Journal of Mechanical Sciences, 38(7), 753-775.
    8. Pan, W. F., Wang, T. R., and Hsu, C. M. (1998). A curvature-ovalization measurement apparatus for circular tubes under cyclic bending. Experimental Mechanics, 38(2), 99-102.
    9. Pan, W. F., and Her, Y. S. (1998). Viscoplastic collapse of thin-walled tubes under cyclic bending. ASME Journal of Engineering Materials and Technology, 120(4), 287-290.
    10. Pan, W. F., and Fan, C. H. (1998). An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending. JSME International Journal, Series A, 41(4), 525-531.
    11. Lee, K. L., Pan, W. F., and Kuo, J. N. (2001). The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending. International Journal of Solids and Structures, 38(14), 2401-2413.
    12. Pan, W. F., and Lee, K. L. (2002). The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending. JSME International Journal, Series A, 45(2), 309-318.
    13. Hsu, C. M., Chang, K. H., Sheu, S. R., and Pan, W. F. (2005). Viscoplastic response and collapse of 316L stainless steel tubes under cyclic bending. Steel and Composite Structures, An International Journal, 5(5), 359-374.
    14. Chang, K. H., Pan, W. F., and Lee, K. L. (2008). Mean moment effect on circular thin-walled tubes under cyclic bending. Structural Engineering and Mechanics: An International Journal, 28(5), 495-514.
    15. Chang, K. H., and Pan, W. F. (2009). Buckling life estimation of circular tubes under cyclic bending. International Journal of Solids and Structures, 46(2), 254-270.
    16. Lee, K. L., Hung, C. Y., and Pan, W. F. (2010). Variation of ovalization for sharp-notched circular tubes under cyclic bending. Journal of Mechanics, 26(3), 403-411.
    17. Lee, K. L., Hsu, C. M., and Pan, W. F. (2012). The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending. Journal of Mechanics, 28(3), 461-468.
    18. Lee, K. L., Hsu, C. M., and Pan, W. F. (2013). Viscoplastic collapse of sharp-notched circular tubes under cyclic bending. Acta Mechanica Solida Sinica, 26(6), 629-641.
    19. Lee, K. L., Chung, C. C., and Pan, W. F. (2016). Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending. Journal of the Chinese Institute of Engineers, 39(8), 926-935.
    20. Lee, K. L., Weng, M. L., and Pan, W. F. (2019). On the failure of round-hole tubes under cyclic bending. Journal of Chinese Society of Mechanical Engineering, 40(6), 663-673.
    21. Lee, K. L., Liu, H. Y. and Pan, W. F. (2021). Response of round-hole tubes submitted to pure bending creep and pure bending relaxation. Advances in Mechanical Engineering, 13(9), 1-17.
    22. Lee, K. L., Tsai, Y. C. and Pan, W. F. (2021). Mean curvature effect on the response and failure of round-hole tubes submitted to cyclic bending. Advances in Mechanical Engineering, 13(11), 1-14.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE