研究生: |
朱嘉瑩 Zhu, Jia-Ying |
---|---|
論文名稱: |
自動化中藥辨識訓練平台 A platform for automating the training of Chinese herbs recognition |
指導教授: |
藍崑展
Lan, Kun-Chan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 中藥辨識 、深度學習 、自動辨識系統 |
外文關鍵詞: | Traditional Chinese Medicine Recognition, Deep Learning, Automating Recognition system |
相關次數: | 點閱:97 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中藥的準確鑑定對於保證患者安全和有效治療至關重要。 然而,現有的中草藥識別研究在識別的草藥類別和手動數據收集過程方面受到限制,阻礙了全面、高效的識別系統的發展。 本研究旨在通過提出一種自動化中草藥識別系統來解決這些局限性。 我們開發了一種自動化中草藥識別系統,使用戶無論其計算機專業知識如何,都可以輕鬆識別不同類型的草藥,添加新的草藥類別,並訓練系統進行準確識別。 通過利用人工智能技術,系統對數據進行預處理,包括裁剪圖像、去除陰影和增強數據集。 我們採用 DC-ShadowNet 模型進行陰影去除,並利用 RandAugment 進行數據增強。 使用 Swin Transformer 模型進行圖像分類。 實驗結果證明了我們系統的有效性,Swin Transformer 模型和 RandAugment 的結合實現了 99.1% 的最高準確率。 令人驚訝的是,加入陰影去除並沒有帶來更好的結果,這表明陰影可能有助於中草藥識別所必需的特徵。 我們的研究結果強調了在準確的草藥分類中考慮表面特徵和陰影存在的重要性。 通過這項研究,我們開發了一種自動化中草藥識別系統,克服了以前方法的局限性。 通過集成人工智能和自動化,我們的系統簡化了中藥材鑑定流程,使無需豐富 IT 背景的用戶也能輕鬆操作。 識別技術的進步有助於中藥在中醫藥領域更廣泛的應用和理解。
Accurate identification of Chinese herbs is crucial in Traditional Chinese Medicine (TCM) to ensure patient safety and effective treatment. However, existing research in Chinese herb recognition has been limited in terms of recognized herbal categories and the manual data collection process, hindering the development of a comprehensive and efficient recognition system. This study aims to address these limitations by proposing an automated Chinese herb recognition system. We have developed an automated Chinese herb recognition system that empowers users, regardless of their computer expertise, to easily recognize different types of herbs, add new herb categories, and train the system for accurate recognition. By leveraging AI techniques, the system preprocesses data, including cropping images, removing shadows, and augmenting datasets. We employed the DC-ShadowNet model for shadow removal and utilized RandAugment for data augmentation. Image classification was performed using the Swin Transformer model. Experimental results demonstrated the effectiveness of our system, with a combination of the Swin Transformer model and RandAugment achieving the highest accuracy of 99.1%. Surprisingly, the inclusion of shadow removal did not lead to improved results, indicating that shadows may contribute to the features essential for Chinese herb recognition. Our findings highlight the importance of considering surface characteristics and shadow presence in accurate herb classification. Through this research, we have developed an automated Chinese herb recognition system that overcomes the limitations of previous approaches. By integrating AI and automation, our system streamlines the Chinese herb identification process, making it accessible to users without extensive IT backgrounds. This advancement in recognition technology contributes to the broader application and understanding of Chinese herbs in the field of Traditional Chinese Medicine.
[1] Sam Leroux, Steven Bohez, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens, and Bart Dhoedt. CVD-HNet: Classifying Pneumonia and COVID-19 in Chest X-ray Images Using Deep Network. Wireless Personal Communications, 126(4), 3279-3303, 2022.
[2] Wenjin Yu, Yangyang Liu, Yunsong Zhao, Haofan Huang, Jiahao Liu, Xiaofeng Yao, Jingwen Li, Zhen Xie, Luyue Jiang, Heping Wu, Xinhao Cao, Jiaming Zhou. Deep Learning-Based Classification of Cancer Cell in Leptomeningeal Metastasis on Cytomorphologic Features of Cerebrospinal Fluid. Frontiers in oncology, 12, 286, 2022.
[3] Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, Xiang Wang. Deep learning-based weather prediction: a survey. Big Data Research, 23, 100178, 2021.
[4] Howard, Andrew, et al. Searching for mobilenetv3. Proceedings of the IEEE/CVF international conference on computer vision, 2019.
[5] Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision, pages 2223-2232,2017.
[6] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, pages 6105–6114.PMLR, 2019.
[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition ,pages 770-778,2016
[8] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition ,pages 4700-4708,2017.
[9] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1),2017.
[10] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1251-1258,2017.
[11] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition ,pages 7132-7141,2018.
[12] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8697-8710,2018.
[13] Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le. Regularized evolution for image classifier architecture search. Proceedings of the aaai conference on artificial intelligence. Vol. 33. No. 01, 2019.
[14] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, Kevin Murphy. Progressive neural architecture search. In Proceedings of the European conference on computer vision (ECCV) (pp. 19-34),2018.
[15] Dosovitskiy, Alexey, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,2020.
[16] Touvron, Hugo, et al. Training data-efficient image transformers & distillation through attention. International conference on machine learning. PMLR, 2021.
[17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pages 10012-10022,2021.
[18] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, Christoph H. Lampert. icarl: Incremental classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,pages 2001-2010,2017.
[19] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, Dahua Lin.. Learning a unified classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition ,pages 831-839,2019.
[20] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, Yun Fu. Large scale incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ,pages 374-382,2019.
[21] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, Eduardo Valle. Podnet: Pooled outputs distillation for small-tasks incremental learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16,pages. 86-102. Springer International Publishing,2020.
[22] Shipeng Yan, Jiangwei Xie, Xuming He. Der: Dynamically expandable representation for class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition ,pages 3014-3023,2021.
[23] Sudhanshu Mittal, Silvio Galesso, Thomas Brox. Essentials for class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3513-3522,2021.
[24] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. Autoaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501,2018.
[25] Sungbin Lim,Ildoo Kim,Taesup Kim,Chiheon Kim,Sungwoong Kim. Fast autoaugment. Advances in Neural Information Processing Systems, 32,2019.
[26] Daniel Ho, Eric Liang, Ion Stoica, Pieter Abbeel, Xi Chen. Population based augmentation: Efficient learning of augmentation policy schedules. In International Conference on Machine Learning ,pages 2731-2741. PMLR,2019.
[27] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, Quoc V. Le. Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 702-703,2020.
[28] Yeying Jin, Aashish Sharma, and Robby T. Tan. Dc-shadownet: Single-image hard and soft shadow removal using unsupervised domain-classifier guided network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5027-5036,2021.
[29] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann Heng. Mask-shadowgan: Learning to remove shadows from unpaired data. In Proceedings of the IEEE/CVF International Conference on Computer Vision ,pages 2472-2481,2019.
[30] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-Ann Heng. Direction-aware spatial context features for shadow detection and removal. IEEE transactions on pattern analysis and machine intelligence, 42(11), 2795-2808,2019.
[31] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, Rynson W. H. Lau. Deshadownet: A multi-context embedding deep network for shadow removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 4067-4075,2017.
[32] H. Gong, D. Cosker. Interactive Shadow Removal and Ground Truth for Variable Scene Categories. In BMVC ,pages 1-11,2014.
[33] Demo Video. https://youtu.be/EB_t8slkepg, 2023.
[34] Dale Joshua R. Del Carmen, Rhandley D. Cajote. Moving shadow detection and removal for video-based traffic monitoring. In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) (pp. 1-7). IEEE,2016.
[35] Hieu Le, Dimitris Samaras. Physics-based shadow image decomposition for shadow removal. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 9088-9101,2021.
[36] M. S. Drew, G. Finlayson, S. Hordley. Recovery of chromaticity image free from shadows via illumination invariance. In IEEE Workshop on Color and Photometric Methods in Computer Vision, ICCV’03 ,pages 32-39,2003.
[37] Salman H. Khan, Mohammed Bennamoun, Ferdous Sohel, and Roberto Togneri. Automatic shadow detection and removal from a single image. IEEE transactions on pattern analysis and machine intelligence, 38(3), 431-446,2015.
[38] S. H. Khan, M. Bennamoun, F. Sohel, R. Togneri. Automatic feature learning for robust shadow detection. In 2014 IEEE Conference on Computer Vision and Pattern Recognition ,pages 1939-1946, IEEE,2014.
[39] Jing Ming,Long Chen,Yan Cao,Chi Yu,Bi-Sheng Huang,and Ke-Li Chen. Rapid identification of nine easily confused mineral traditional chinese medicines using raman spectroscopy based on support vector machine. Journal of Spectroscopy, 2019.
[40] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba. Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition ,pages 2921-2929,2016.
[41] Ruiqi Guo, Qieyun Dai, Derek Hoiem. Paired regions for shadow detection and removal. IEEE transactions on pattern analysis and machine intelligence, 35(12), 2956-2967,2012.
[42] Bingchen Huang, Zhineng Chen, Peng Zhou, Jiayin Chen, Zuxuan Wu. Resolving Task Confusion in Dynamic Expansion Architectures for Class Incremental Learning. arXiv preprint arXiv:2212.14284,2022.
[43] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, Shutao Xia. Maintaining Discrimination and Fairness in Class Incremental Learning.In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition ,pages 13208-13217,2020.
[44] Francisco M. Castro, Manuel J. Marín-Jiménez, Nicolás Guil, Cordelia Schmid, Karteek Alahari. End-to-end incremental learning. In Proceedings of the European conference on computer vision (ECCV) ,pages 233-248,2018.
[45] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,2017.
[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. Rapid identification of nine easily confused mineral traditional chinese medicines using raman spectroscopy based on support vector machine. Journal of Spectroscopy, 2019.
[47] Amgad Muneer,Suliman Mohamed Fati. Efficient and automated herbs classification approach based on shape and texture features using deep learning. IEEE Access, 8, 196747-196764,2020.
[48] Juei-Chun Weng, Min-Chun Hu, Kun-Chan Lan, Recognition of easily-confused TCM herbs using deep learning. In Proceedings of the 8th ACM on Multimedia Systems Conference ,pages 233-234,2017.
[49] Sun X, Qian H. hinese Herbal Medicine Image Recognition and Retrieval by Convolutional Neural Network. PLoS ONE 11(6): e0156327,2016.
[50] Yingxue Xu,Guihua Wen,Yang Hu, Mingnan Luo, Dan Dai, Yishan Zhuang, Wendy Hall,Mutiple attentional pyramid networks for Chinese herbal recognition. Pattern Recognition, 110, 107558,2021.
[51] Opencv Website. https://opencv.org/releases/, 2000.