簡易檢索 / 詳目顯示

研究生: 蔡尚武
Tsai, Shang-Wu
論文名稱: 含任意方向裂縫之功能梯度熱彈性破壞力學問題
The Thermoelastic Problem of a Functionally Graded Infinite Medium Containing an Arbitrarily Oriented Crack
指導教授: 褚晴暉
Chue, Ching-Hwei
屈子正
Chiu, Tz-Cheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 182
中文關鍵詞: 功能梯度材料熱負載應力強度因子任意方向裂縫高斯-切比雪夫數值積分法。
外文關鍵詞: Graded material, Heat conduction, Stress intensity factor, Arbitrarily oriented crack, Gauss-Chebyshev integration technique.
相關次數: 點閱:164下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討含有單一嵌入式任意方向裂縫之功能梯度材料無窮平面受到遠端均勻熱通量作用下之面內破壞力學問題。文中所考慮之熱通量與材料梯度方向一致,且裂縫面假設為部份絕熱條件。本文依據熱彈性力學相關之理論基礎,運用傅立葉積分轉換,將此混合邊界值問題化解成奇異積分方程組,再藉由高斯-切比雪(Gauss-Chebyshev)多項式技術化簡為代數聯立方程組,以求得裂縫表面附近之溫度場、裂縫尖端熱通量強度因子與應力強度因子之數值解。接著從數值結果分別討論裂縫部份絕熱參數、材料非均質參數以及裂縫方向對溫度場、熱通量與應力強度因子之影響。相較於先前發表的文獻,本論文之裂縫方向不再侷限於垂直熱通量方向,因而能夠分析探討在任意裂縫方向與材料非均質參數的交互影響下,裂縫表面附近之溫度場、裂縫附近的熱通量強度因子與應力強度因子的變化。

    In this dissertation, the problem of an arbitrarily-oriented partially-insulated crack in an infinite FGM plane subjected to uniform remote heat flux along the direction of material gradient is considered. The material gradient is assumed to be in the exponential form. By using Fourier transform, the field equations with mixed boundary conditions are reduced into a system of singular integral equations and then solved numerically by using the Gauss-Chebyshev polynomials. Results are shown graphically to illustrate the effects of crack insulating capability, material inhomogeneity, and crack orientation on the temperature fields, the heat flux intensity factors and stress intensity factors at both crack tips. The crack closure algorithm is also applied to evaluate crack surface contact induced stress intensity factor changes at both crack tips. Compared to the thermo-mechanical problem discussed in literatures, the orientation of the cracking defect considered in this thesis is not restricted to be perpendicular to the direction of material grading. Consequently, the thermo-elastic solutions can be and are used to evaluate the effect of crack orientation and its interaction with the influence of grading inhomogeneity on the temperature gradient, heat intensification around the cracking defect and crack-tip stress intensity factor.

    Abstract i 摘 要 ii 誌 謝 iii List of Contents iv List of Tables viii List of Figures xiii Nomenclature xvi Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Functionally graded materials 2 1.2.1 Concept 2 1.2.2 History 4 1.2.3 Types of manufacturing process techniques 5 1.2.4 Gradient forms 6 1.2.5 Application 8 1.3 Literature survey 9 1.4 Statement of the crack problem 12 1.4.1 Geometry of the problem 12 1.4.2 Superposition technique 13 1.5 Overview 16 Chapter 2 Temperature formulation 17 2.1 Basic theory of heat conduction and thermoelasticity 17 2.1.1 Heat conduction 17 2.1.2 Thermoelasticity 18 2.2 Governing equation 20 2.3 Boundary conditions 22 2.4 The integral equation 23 2.5 Formulation of temperature field 27 Chapter 3 Displacement formulation 29 3.1 Governing equations 29 3.2 Boundary conditions 32 3.3 Formulation of displacement field 32 3.3.1 Homogeneous solution 32 3.3.2 Particular solution 36 3.3.3 The integral equations 38 Chapter 4 Thermal stress analysis 45 4.1 Introduction 45 4.2 Thermal stress for stress free condition 46 4.3 Thermal stress for fully constrained condition 46 Chapter 5 Solution of singular integral equations and numerical procedures 50 5.1 Solution of integral equations 50 5.1.1 Heat conduction problem 50 5.1.2 Temperature field 53 5.1.3 Thermoelastic problem 55 5.2 Integrals involving the Chebyshev polynomials 58 5.3 Convergence of the approximation 59 Chapter 6 Intensity factors and crack-closure algorithm 61 6.1 Intensity factors 61 6.1.1 Nature of heat flux and stress singularity 61 6.1.2 Heat flux intensity factor 63 6.1.3 Stress intensity factor 65 6.2 Crack opening shape 66 6.3 Crack closure algorithm 67 Chapter 7 Results and discussion 72 7.1 Heat conduction problem 72 7.1.1 Temperature field along the crack surface planes 72 7.1.2 Temperature distribution around the crack 81 7.1.3 Heat flux intensity factor 89 7.2 Thermoelastic problem 94 7.2.1 Thermal crack surface stress 94 7.2.2 Crack opening shape for closure-closure algorithm 105 7.2.3 Stress intensity factor 109 Chapter 8 Conclusion 121 References 123 Appendix A Expressions of various functions 134 A.1 Expressions in particular displacement field 134 A.2 Expressions of Kij in the integral equations (3.91) and (3.92) 135 A.3 Expressions of fi and hi in the equations (3.95) and (3.96) 136 Appendix B Asymptotic expressions for the integrands in the kernels 138 Appendix C Formula for evaluating the asymptotic kernels 140 Appendix D Gauss-Legendre quadratures 142 Appendix E Closed-form expressions for the infinite homogeneous medium 144 E.1 Closed-form expressions for the crack surface temperature field 144 E.2 Closed-form expressions for thermal crack surface stresses 144 E.3 Closed-form expressions for stress intensity factors 145 Appendix F Tables for crack-closure algorithm 146 Appendix G Tables for heat conduction problem 153 G.1 Tables for temperature field 153 G.2 Tables for heat flux intensity factor 166 Appendix H Tables for thermoelastic problem 168 H.1 Tables for equivalent thermal crack surface stresses 168 H.2 Tables for crack surface displacement 175 H.3 Tables for stress intensity factors 177 Vita 182

    [1] Nissley, D. M., 1997. Thermal barrier coating life modeling in aircraft gas turbine engines. Journal of Thermal Spray Technology 6, 91-98.
    [2] Holt, J. B., Koizumi, M., Hirai, T., and Munir, Z. A., 1993. Ceramic Transactions - Functionally Gradient Materials 34, American Ceramic Society, Westerville, Ohio.
    [3] Lanutti, J.J., 1994. Functionally graded materials: properties, potential and design guidelines. Composites Engineering 4, 81-94.
    [4] Lee, W. Y., Stinton, D. P., Berndt, C. C., Erdogan, F., Lee, Y. D., and Mutasim, Z., 1996. Concept of functionally graded materials for advanced thermal barrier coating applications: a review. Journal of American Ceramic Society 79, 3003-3012.
    [5] Kaysser, W. A. (Ed.), 1999. Materials Science Forum - Functionally Graded Materials, Vol. 308-311, Trans Tech Publications.
    [6] Lee, Y. D., and Erdogan, F., 1995. Residual/thermal stresses in FGM and laminated thermal barrier coatings. International Journal of Fracture 69, 145-165.
    [7] Kurihara, K., Sasaki, K., and Kawarada, M., 1990. Adhesion improvement of diamond films, in: Yamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I., Proceedings of the 1st International Symposium on Functionally Gradient Materials, Tokyo, Japan, 65-69.
    [8] Gu, Y. W., Khor, K. A., Fu, Y. Q., and Wang, Y., 1997. Functionally graded ZrO2 –NiCrAlY coatings prepared by plasma spraying using pre-mixed, spheroidized powders. Surface and Coatings Technology 96, 305-312.
    [9] Khor, K. A., Wang, Y., and Cheang, P., 1998. Thermal spraying of functionally graded coatings for biomedical applications. Surface Engineering 14, 159-164.
    [10] Chu, C., Xue, X., Zhu, J., and Yin, Z., 2006. In vivo study on biocompatibility and bonding strength of Ti/Ti–20 vol. % HA/Ti–40 vol. % HA functionally graded biomaterial with bone tissues in the rabbit. Materials Science and Engineering A 429, 18-24.
    [11] Shen, W. P., Li, Q., Chang, K., Zhou, Z. J., and Ge, C. C., 2007. Manufacturing and testing W/Cu functionally graded material mock-ups for plasma facing components. Journal of Nuclear Materials, Vol. 367-370 B, 1449-1452.
    [12] Cherradi, N., Kawasaki, A. and Gasik, M., 1994. Worldwide trends in functionals research and development. Composite Engineering 4, 883-894.
    [13] 王保林、韩杰才、张幸红,2003。非均匀材料力学。科学出版社,北京市。
    [14] Holt, J. B., Koizumi, M., Hirai, T., and Munir, Z. A., 1992. Functionally gradient materials. In Ceramic Transactions, Proceedings of Second International Symposium on Functionally Gradient Materials, San Francisco.
    [15] Bever, M. B., and Duwez, P. E., 1972. Gradients in composite materials. Materials Science and Engineering 10, 1-8.
    [16] Niino, M., Kumakawa, A., Watanabe, R., and Doi, Y., 1984. Fabrication of a high pressure thrust chamber by the CIP forming method. AIAA Paper, 84-1227.
    [17] Wang, B. L., Han, J. C., and Zhang, X. H., 2003. Heterogeneous materials mechanics. Science Press, Beijing. (In Chinese)
    [18] Suresh, S., and Mortensen, A., 1998. Fundamentals of functionally graded materials: processing and thermomechanical behavior of graded metals and metal-ceramic composites. IOM Communications Ltd, London.
    [19] Xiong, H., Zhang, L., Chen, L., Yuan, R., and Hirai, T., 2000. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 31, 2364-2376.
    [20] Wang, Y., Chen, M., Qi, L. Z., Liu, Z. L., Yao, K. L., and Wang, Q. L., 2003. A new application of pulsed laser deposition to produce functional graded material thin films. Materials Science Forum, Vol. 423-425, 573-576.
    [21] Singh, J., Wolfe, D. E., and Singh, J., 2002. Architecture of thermal barrier coatings produced by electron beam-physical vapor deposition (EB-PVD). Journal of Materials Science 37, 3261-3267.
    [22] Lee, W. Y., Bae, Y. W., and More, K. L., 1995. Synthesis of functionally graded metal-ceramic microstructures by chemical vapor deposition. Journal of Materials Research 10, 3000-3002.
    [23] Zhang, W. F., Xi, N. S., Tao, C. H., Han, J. C., and Du, S., Y., 2001. Microstructure and resisting thermal shock behaviors of TiC-Al2O3/Fe functionally graded materials prepared by SHS/PHIP. Journal of Materials Science and Technology 17, 65-66.
    [24] Li, C., Weng, G. J., Duan, Z., and Zou, Z., 2001. Dynamic stress intensity factor of a functionally graded material under antiplane shear loading. Acta Mechanica 149, 1-10.
    [25] Erdogan, F., 1985. The crack problem for bonded nonhomogeneous materials under antiplane shear loading. Transactions of the ASME, Journal of Applied Mechanics 52, 823-828.
    [26] Chue, C. H., and Ou, Y. L., 2005. Mode III crack problems for two bonded functionally graded piezoelectric materials. International Journal of Solids and Structures 42, 3321-3337.
    [27] Chue, C. H., and Ou, Y. L., 2006. Mode III eccentric crack in a functionally graded piezoelectric strip. International Journal of Solids and Structures 43, 6148-6164.
    [28] Chue, C. H., and Ou, Y. L., 2006. Two mode III internal crack located within two bonded functionally graded piezoelectric half planes respectively. Archive of Applied Mechanics 75, 364-378.
    [29] Wang, H., Qin, Q. H., and Kang, Y. L., 2006. A meshless model for transient heat conduction in functionally graded materials. Computational Mechanics 38, 51-60.
    [30] Cao, L. L., Qin, Q. H., and Zhao, N., 2012. Hybrid graded element model for transient heat conduction in functionally graded materials. Acta Mechanica Sinica 28, 128-139.
    [31] Kassir, M. K., 1970. The Reissner-Sagoci problem for a non-homogeneous solid. International Journal of Engineering Science 8, 875-885.
    [32] Kassir, M. K., 1972. Boussinesq problems for a nonhomogeneous solid. Journal of the Engineering Mechanics Division. ASCE 98, 457-470.
    [33] Popov, G. I., 1973. Axisymmetric contact problem for an elastic inhomogeneous half-space in the presence of cohesion. PMM 37, 1109-1116.
    [34] Schovanec, L., 1989. An antiplane shear crack in a nonhomogeneous elastic material. Engineering Fracture Mechanics 32, 21- 28.
    [35] Li, C., Weng, G. J., and Duan, Z., 2001b. Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading. International Journal of solids and Structures 38, 7473-7485.
    [36] Kassir, M. K., and Chuaprasert, M. F., 1974. A rigid punch in contact with a nonhomogeneous elastic solid. Transactions of the ASME, Journal of Applied Mechanics 42, 1019-1024.
    [37] Gerasoulis, A., and Srivastav, R. P., 1980. Griffith crack problem for a nonhomogeneous medium. International Journal of Engineering Science 18, 239-247.
    [38] Jin, Z. H., and Noda, N., 1993. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. International Journal of Engineering Science 31, 793-806.
    [39] Jin, Z. H., and Noda, N., 1994. Edge crack in a nonhomogeneous half plane under thermal loading. Journal of Thermal Stresses 17, 591-599.
    [40] Jin, Z. H., and Batra, R. C., 1996. Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids 44, 1221-1235.
    [41] Gu, P., and Asaro, R. J., 1997. Cracks in functionally graded materials. International Journal of Solids and Structures 34, 1-17.
    [42] Jeon, S. P., and Tanigawa, Y., 1998. Axisymmetrical elastic behavior and stress intensity for a nonhomogeneous medium with a penny-shaped crack. JSME International Journal, Series A 41, 457-464.
    [43] Li, C., 1998. Local stress field for torsion of a penny-shaped crack in a functionally graded material. International Journal of Fracture 91, L17-L22.
    [44] Yang, Y. Y., 1998. Stress analysis in a joint with a functionally graded material under a thermal loading by using the Mellin transform method. International Journal of Solids and Structures 35, 1261-1287.
    [45] Li, C., and Zou, Z., 1999. Torsional impact response of a functionally graded material with a penny-shaped crack. Transactions of the ASME, Journal of Applied Mechanics 66, 566-567.
    [46] Parameswaran, V., and Shukla, A., 1999. Crack-tip stress fields for dynamic fracture in functionally gradient materials. Mechanics of Materials 31, 579-596.
    [47] Li. H., Lambros, J., Cheeseman, B. A., and Santare, M. H., 2000. Experimental investigation of the quasi-static fracture of functionally graded materials. International Journal of Solids and Structures 37, 3715-3732.
    [48] Li, C., and Weng, G. J., 2002. Antiplane crack problem in functionally graded piezoelectric materials. Journal of Applied Mechanics, Transactions ASME 69, 481-488.
    [49] Choi, H. J., 2004. Impact response of a surface crack in a coating/substrate system with a functionally graded interlayer: Antiplane deformation. International Journal of Solids and Structures 41, 5631-5645.
    [50] Choi, H. J., 2006. Elastodynamic analysis of a crack at an arbitrary angle to the graded interfacial zone in bonded half-planes under antiplane shear impact. Mechanics Research Communications 33, 636-650.
    [51] Feng, W. J., Wang, H. J., Xue, Y., and Li, H., 2006. Antiplane shear impact of multiple coplanar Griffith cracks in an isotropic functionally graded strip. Composite Structures 73, 354-359.
    [52] Choi, H. J., 2007. Impact behavior of an inclined edge crack in a layered medium with a graded nonhomogeneous interfacial zone: Antiplane deformation. Acta Mechanica 193, 67-84.
    [53] Ozturk, M., and Erdogan, F., 1993. Antiplane shear crack problem in bonded materials with a graded interfacial zone. International Journal of Engineering Science 31, 1641-1657.
    [54] Williamson, R. L., Rabin, B. H., and Drake, J. T., 1993. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part I. Model description and geometrical effects. Journal of Applied Physics 74, 1310-1320.
    [55] Drake, J. T., Williamson, R. L., and Rabin, B. H., 1993. Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part II. Interface optimization for residual stress reduction. Journal of Applied Physics 74, 1321-1326.
    [56] James, K. W., 2004. Handbook of Advanced Materials. John Wiley & Sons. Inc, New York.
    [57] Wang, B. L., and Noda, N., 2003. Thermally loaded functionally graded materials with embedded defects. Journal of Thermal Stresses 26, 25-39.
    [58] Wang, B. L., Mai, Y. W., and Noda, N., 2004. Fracture mechanics analysis models for functionally graded materials with arbitrarily distributed properties (Mode II and III problems). International Journal of Fracture 126, 307-320.
    [59] Itou, S., 2005. Thermal stresses around a crack in a non-homogeneous diffusion layer between a coating plate and an elastic half-plane. Journal of Thermal Stresses 28, 1161-1178.
    [60] Delale, F., and Erdogan, F., 1983. The crack problem for a nonhomogeneous plane. Transaction of the ASME, Journal of Applied Mechanics 50, 609-614.
    [61] Eischen, J. W., 1987. Fracture of nonhomogeneous materials. International Journal of Fracture 34, 3-22.
    [62] Kokini, K., DeJonge, J., Rangaraj, S., and Beardsley, B., 2002. Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surface and Coatings Technology 154, 223-231.
    [63] Muller, E., Drasar, C., Schilz, J., and Kaysser, W. A., 2003. Functionally graded materials for sensor and energy applications. Materials Science and Engineering A 362, 17-39.
    [64] Sih, G. C., 1965. Heat conduction in the infinite medium with lines of discontinuities. ASME Journal of Heat Transfer 87, 293-298.
    [65] Tzou, D. Y., 1990. The singular behavior of the temperature gradient in the vicinity of a macrocrack tip. International Journal of Heat and Mass Transfer 33, 2625-2630.
    [66] Chao, C. K., and Chang, R. C., 1992. Thermal interface crack problems in dissimilar anisotropic media. Journal of Applied Physics 72, 2598-2604.
    [67] Chao, C. K., and Chang, R. C., 1993. Steady-state heat conduction problem of the interface crack between dissimilar anisotropic media. International Journal of Heat and Mass Transfer 36, 2021-2026.
    [68] Chao, C. K., and Kuo, L. Y., 1993. Thermal problem of curvilinear cracks in bounded dissimilar materials with a point heat source. International Journal of Heat and Mass Transfer 36, 4085-4093.
    [69] Jin, Z. H., and Noda, N., 1993. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. International Journal of Engineering Science 31, 793-806.
    [70] Noda, N., and Jin, Z. H., 1993. Steady thermal stresses in an infinite nonhomogeneous elastic solid containing a crack. Journal of Thermal Stresses 16, 181-196.
    [71] Noda, N., and Jin, Z. H., 1993. Thermal stress intensity factors for a crack in a strip of a functionally gradient material. International Journal of Solids and Structures 30, 1039-1056.
    [72] Erdogan, F., and Wu, B. H., 1996. Crack problems in FGM layers under thermal stresses. Journal of Thermal Stresses 19, 237-265.
    [73] Itou, S., 2005. Thermal stresses around a crack in a non-homogeneous diffusion layer between a coating plate and an elastic half-plane. Journal of Thermal Stresses 28, 1161-1178.
    [74] Nemat-Alla, M., and Noda, N., 1996. Thermal stress intensity factor for functionally gradient half space with an edge crack under thermal load. Archive of Applied Mechanics 66, 569-580.
    [75] Noda, N., 1999. Thermal stresses in functionally graded materials. Journal of Thermal Stresses 22, 477-512.
    [76] Lee, Y. D., and Erdogan, F., 1998. Interface cracking of FGM coatings under steady-state heat flow. Engineering Fracture Mechanics 59, 361-380.
    [77] Choi, H. J., 2003. Thermoelastic problem of steady-state heat flow disturbed by a crack perpendicular to the graded interfacial zone in bounded materials. Journal of Thermal Stresses 26, 997-1030.
    [78] El-Borgi, S., Erdogan, F., and Hatira, F. B., 2003. An interface crack between a functionally graded coating and a homogeneous substrate under thermo-mechanical loading. Materials Science Forum, Vol. 423-425, 601-606.
    [79] El-Borgi, S., Erdogan, F., and Hidri, L., 2004. A partially insulated embedded crack in an infinite funcionally graded medium under thermo-mechanical loading. International Journal of Engineering Science 42, 371-393.
    [80] El-Borgi, S., Hidri, L., and Abdelmoula, R., 2006. An embedded crack in a graded coating bounded to a homogeneous substrate under thermo-mechanical loading. Journal of Thermal Stresses 29, 439-466.
    [81] Rekik, M., Neifar, M., and El-Borgi, S., 2011. An axisymmetric problem of a partially insulated crack embedded in a graded layer bonded to a homogeneous half-space under thermal loading. Journal of Thermal Stresses 34, 201-227.
    [82] Choi, H. J., 2011. Thermoelastic problem of steady-state heat flows disturbed by a crack at an arbitrary angle to the graded interfacial zone in bounded materials. International Journal of Solids and Structures 48, 893-909.
    [83] Carslaw, H. S., and Jaeger, J. C., 1959. Conduction of heat in solid. Oxford University.
    [84] Mikhailov, M. D., and Ozisik M. N., 1984. Unified analysis and solutions of heat and mass diffusion. Dover Publications, Inc., New York.
    [85] Boley, B. A., and Weiner J. H., 1960. Theory of thermal stresses. New York:Wiley.
    [86] Boresi, A. P., and Chong, K. P., 2000. Elasticity in engineering mechanics. A Wiley - Interscience Publication, John Wiley & Sons, Inc., New York.
    [87] Sadd, M. H., 2009. Elasticity: theory, applications, and numerics. Elsevier Inc..
    [88] Muskhelishvili, N. I., 1992. Singular integral equations, Dover, New York.
    [89] Chiu, T. C., 2000. Buckling of graded coating - a continuum model. Ph.D. Thesis, Lehigh University.
    [90] Abramowitz, M., and Stegun, I. E., 1973. Handbook of mathematical functions, Dover, New York.
    [91] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1993. Numerical recipes in Fortran, The Art of Scientific Computing, Second Edition, Published by the Press Syndicate of the University of Cambridge.
    [92] Gerald, C. F., and Wheatley, P. O., 2004. Applied numerical analysis, Seventh edition, New York.
    [93] Sih, G. C., 1962. On the singular character of thermal stresses near a crack tip. Journal of Applied Mechanics 29, 587-589.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE