| 研究生: |
吳育宗 Wu, Yu-Tzong |
|---|---|
| 論文名稱: |
以反應蒸餾法製備醚類汽油添加劑 Ⅱ.第三戊基乙基醚之合成 Preparation of Ethers as Fuel Additives by Reactive Distillation Ⅱ. Synthesis of Tert-Amyl Ethyl Ether |
| 指導教授: |
翁鴻山
Weng, Hung-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 第三戊基醇 、催化蒸餾 、乙醇 、第三戊基乙基醚 |
| 外文關鍵詞: | Reactive Distillation, Ethanol, TAEE, TAA |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究室為探討以催化蒸餾技術由具支鏈之五碳烯—2-甲基-2-丁烯與乙醇反應合成醚類汽油添加劑第三戊基乙基醚(tert-amyl ethyl ether , 簡稱TAEE),將研究分為三階段。第一階段由2-甲基-2-丁烯經水合反應製備2-甲基-2-丁醇(或稱第三戊基醇, tert-amyl alcohol, 簡稱TAA) ﹔第二階段則由TAA和乙醇合成TAEE ﹔第三階段將直接以2-甲基-2-丁烯和乙醇合成TAEE。本研究即為第二階段之研究。
首先對於攪拌速率、反應溫度、觸媒用量、觸媒重複使用、反應物不同莫耳比、添加水及壓力等對TAA之反應速率和TAEE之生成分率的影響予以探討。反應是使用Amberlyst 15為觸媒,反應液體積約為445 ml,其中含 250 ml 2-甲基-2-丁醇,134.8 ml乙醇 和60 ml正庚烷。當攪拌速率達到400 rpm以上時,可以忽略外部質傳阻力對反應之影響;當觸媒用量超過20克時,觸媒用量對反應速率與第三戊基乙基醚之生成分率的影響將逐漸減小;同時也發現觸媒可重複使用而活性不會衰減。當乙醇對2-甲基-2-丁醇莫耳數比值增加時,則不管是轉化率或主產物之生成分率都呈現遞增的趨勢;但系統加入水後,水會抑制反應,特別是主反應的進行因而降低反應速率及第三戊基乙基醚的生成分率,而壓力的改變對反應影響並不大。在不同反應溫度下,求出主反應之正向視反應常數,從而求出正向反應之視活化能為60.4 kJ / mole。
接著探討2-甲基-2-丁醇與乙醇醚化反應之機構。由於反應伴隨著三個副反應,即主反應為2-甲基-2-丁醇(TAA)與乙醇(EtOH)醚化生成第三戊基乙基醚(TAEE)與水 ﹔副反應為TAA脫水生成2-甲基-1-丁烯(2M1B)或2-甲基-2-丁烯(2M2B),以及2M1B轉化為2M2B。我們以初始速率法求取各反應之速率表示式及常數值。得到副反應之正向反應階次對TAA皆為一次,逆向反應之反應階次對2M1B與2M2B及水也各為一次。
最後也就第三階段由2-甲基-2-丁烯與乙醇直接合成TAEE作了初步實驗。分別以使用及不使用共溶劑(丙酮)進行反應,發現在這兩種不同的系統中,皆有TAEE產生。TAEE之生成已經過氣相層析質譜儀測定證實無誤。
除此之外,為了尋求更佳的觸媒,最後又以Amberlyst-31及Amberlyst-36等酸性離子交換樹脂為觸媒進行實驗,確定在相同條件下,這二種樹脂和Amberlyst-15之活性大致相同,但Amberlyst-31的選擇率最高。未來將以它重複第一、二階段之實驗及進行後續之研究。
One of projects in our laboratory is to synthesize a fuel additive, tert-amyl ethyl ether (TAEE), from isoamylenes by catalytic distillation. The study is composed of three steps. In the first step, tert-amyl alcohol (TAA) was prepared from isoamylene by hydration. In the second step, TAEE is synthesized from TAA and ethanol by etherification. And TAEE will be prepared directly from isoamylenes with ethanol in the last step. This thesis deals with the results obtained in the second step.
We investigated the influences of agitation speed, reaction temperature, amount of catalyst , reuse of catalyst, reactant molar ratio, water inhibition, and reaction pressure on the reaction rate and the fractional yield of TAEE. The experimental runs were carried out with Amberlyst 15 as the catalyst, and a liquid of 445 ml containing 250 ml tert-amyl alcohol, 134.8 ml ethanol and 60 ml n-heptane. Experimental results reveal that the influence of external mass transfer resistance can be neglected when the agitation speed is above 400 rpm, and the influence of catalyst loading becomes smaller on the reaction rate and yield of TAEE when the weight of catalyst is beyond 20 gram. It is also found that the catalyst can be reused without activity decay. Both conversion and yield rised when the ethanol/TAA molar ratio is increased. When water is added to the system, the reaction rate and yield decrease greatly due to its inhibition on the reaction, especially on the main reaction. However, the conversion is almost independent of the pressure. The apparent activation energy of the forward reaction is 60.4 kJ/mole.
Subsequently, a kinetic study on the etherification of tert-amyl alcohol with ethanol to produce TAEE and water was carried out. It was found that several side reactions took place simultaneously. Those are the dehydration of tert-amyl alcohol to 2-methyl-1-butene (2M1B) or 2-methyl-2-butene (2M2B), and the isomerization of 2M1B to 2M2B.The initial-rate method was employed to evaluate the rate equations and kinetic parameters. It was found that the side reactions are first order with respect to tert-amyl alcohol of all the forward reactions and are also first order with respect to both 2M1B and 2M2B as well as water in the reverse reactions.
At last, an exploratory study on the third step, the etherification of 2-methyl-2-butene and ethanol to TAEE, was carried out. Acetone was added as a cosolvent to the reactor for comparing with the case without cosolvent. In both systems, the TAEE compound was produced and
was confirmed by the GC/MS.
Besides, in order to find a better catalyst, Amberlyst-31 and Amberlyst -36, were also tested except Amberlyst 15. The reaction rates were almost the same no matter what kinds of catalysts were used, which the yield of TAEE was the highest when Amberlyst-31 was employed. We will repeat the experiments in the first and second steps, and carry out the subsequent studies by using Amberlyst -31 as the catalyst in the future.
Ancillotti F., Maura M., Pescarollo E., Ion exchange resin catalyzed addition of alcohols to olefins, J. Catal., 1977, 46, 49
Ancillotti F., Fattore V., Oxygenate fuels: Market expansion and catalytic aspect of synthesis, Fuel Processing Technology, 1998, 57, 163
Chaplits, D. N., U.S. Patent 4, 1974, 012, 456
Damkohler, G., Chem. Ing. Tech. 1939, 12, 469
Delion A.,Torck B., Hellin M., Hydration of isopentenes in an acetone environment over ion-exchange resin: Thermodynamic and kinetic analysis, J. Catal., 1987, 103, 177
Dudukovic M. P., Trends in catalytic reaction engineering, Catal. Today, 1999, 48, 5
Gonzalez J. C., Fair J. R., Preparation of Tertiary Amyl Alcohol in a Reactive Distillation Column 1.Reaction Kinetics, Chemical Equilibrium, and Mass-Transfer Issues, Ind. Eng. Chem. Res., 1997, 36, 3833
Goto, S.; Chatani, T.; Matouq, M. H., J. Chem. Eng., 1993, 71, 821
Gotze L., Bailer O., Moritz P., Scala C., Reactive distillation with KATAPAK, Catalysis Today, 2001, 69, 201
Hauan S., Hertzberg T., Lien K. M., Multiplicity in reactive distillation of MTBE, Computers Chem. Engng., 1997, 21, 1206
Hartley W. R., Englande A. J., Harrington D. J., Health risk assessment of groundwater contaminated with methyl tertiary butyl ether (MTBE), Water Science Tech., 1999, 99, 305
Hao X.-R., Wang J.-S., Yang Z.-R., Bao J., Novel catafractionation technology for the production of methyl tert-butyl ether, The Chemical Engineering Journal, 1995, 56, 11
Johanson Gunnar, Nihlen Annsofi, Lof Agneta, Toxicokinetics and acute effects of MTBE and ETBE in male volunteers, Toxicology Letters, 1995, 82, 713
Kitchaiya P., Datta R., Ethers form ethanol. 2. Reaction equilibria of simultaneous tert-amyl-ethyl ether synthesis and isoamylene isomerization, Ind. Eng. Chem. Res., 1995, 34, 2013
Krause A. O. I., Hammarstrom L. G., Etherification of isoamylenes with methanol, Applied Catal., 1987, 30, 313
Kreul L. U., Gorak A., Dittrich C., Barton P. I., Dynamic catalytic distillation: advanced simulation and experimental validation, Computers chem. Engng., 1998, 22, 371
Krahenbuhl M. A., Gmehling J., Vapor Pressures of Methyl tert-Butyl Ether, Ethyl tert-Butyl Ether, and Isopropyl tert-Butyl Ether, tert-Amyl Methyl Ether, and tert-Amyl Ethyl Ether, J. Chem. Eng. Data, 1994, 39, 759
Lee Ming-Jer, Wu Hsien-Tsung, Lin Ho-Mu, Kinetics of catalytic esterification of acetic acid and amyl alcohol over Dowex, Ind. Eng. Chem. Res., 2000, 39, 4094
Linnekoski Juha A., Paivi Kiviranta-Paakkonen, Krause Quti A., Simultaneous Isomerization and Etherification of Isoamylenes, Ind. Eng. Chem. Res., 1999, 38, 4563
Linnekoski Juha A., Krause Quti A., Kinetics of the Heterogeneously Catalyzed Formation of tert-Amyl Ethyl Ether, Ind. Eng. Chem. Res., 1997, 36, 310
Linnekoski Juha A., Krause Quti A., Dehydration of the Alcohol in the Etherification of Isoamylenes with Methanol and Ethanol, Ind. Eng. Chem. Res., 1998, 37, 18
Linnekoski Juha A., Krause Quti A., Struckmann Liisa K., Etherification and hydration of isoamylenes with ion exchange resin, Applied Catalysis, 1998, 170, 117
March, J., Advanced Organic Chemistry : Reactions, Mechanism, and Structure, 3rd ed., John Wiley & Sons, 1985, 2, 684
Matsuzawa, H., Ikeda, M., Sugimoto, Y., Uchida, S., U.S. Patent 4, 1975, 011, 272
Malone M. F., Doherty M. F., Reactive Distillation, Ind. Eng. Chem. Res., 2000, 39, 3953
Mohl K. D., Kienle A., Gilles E. D., Steady-state multiplicities in reactive distillation columns for the production of fuel ethers MTBE and TAME: theoretical analysis and experimental verification, Chem. Eng. Sci., 1999, 54, 1029
Moy, D., Rakow, M. S., U.S. Patent 4, 1976, 096, 194
Marchionna Mario, Girolamo Marco Di, Patrini Renata, Light olefins dimerization to high quality gasoline components, Catalysis Today, 2001, 65, 397
Nadim F., Zack P., George E. Hoag, Shili Liu, United States experience with gasoline additives, Energy Policy., 2001, 29, 1
National Reformulated Gasoline Hotline (NRGH), History and
Overview of the Reformulated Gasoline Program: A Brief Book for the Members of the Congress Of United States and Staff, 1999, 52
Odioso R. C., Henke M., Stauffer, H. C., Frech, K. J., Direct hydration of olefins, Ind. Eng. Chem. 1961, 53 , 209
Okasinski, M. J., Doherty, M. F., Design method for kinetically controlled, staged reactive distillation columns, Ind. Eng. Chem. Res. 1998, 37, 2821
Oudshoorn O.L., Janissen M., Kooten W.E.J., Jansen J.C., Bekkum H., Bleek C.M., Calis H.P.A., A novel structured catalyst packing for catalytic distillation of ETBE, Chem. Eng. Sci., 1999, 54, 1413
Pecci G., Floris J. Hydrocarbon Processing, 1977, Dec., 98
Perez E., Schenk M., Gani R., Pilavachi P.A., Aspects of simulation, design and analysis of reactive distillation operations, Computers chem. Engng., 1996, 20, 267
Prokop Z., Setinek K., Collect. Czech. Chem. Commun., 1987, 52, 1272
Pozniczek J., Malecka-Lubanska A., Micek-Ilnicka A., Bielanski A., Gas phase hydration of isobutene to tert-butyl alcohol on H4SiW12O40 as the catalyst, Applied Catalysis, 1999, 176, 101
Rihko L. K., Krause A. O. I., Reactivity of isoamylenes with ethanol, Applied Catal. A, 1993,101, 283
Rihko L. K., Linnekoski J. A., Krause A. O. I., Reaction Equilibria in the Synthesis of 2-Methoxy-2-methylbutane and 2-Ethoxy-2-methylbutane in the Liquid Phase, J. Chem. Eng., 1994, 39, 700
Sundmacher K., Uhde G., Hoffmann U., Multiple reactions in catalytic Distillation processes for the production of the fuel oxygenates MTBE and TAME: Analysis by rigorous model and experimental validation, Chem. Eng. Sci., 1999, 54, 2839
Serafimov L.A., Pisarenko Yu. A., Kulov N.N., Coupling Chemical Reaction with Distillation: Thermodynamic Analysis and Practial Applications, Chemical Engineering Science, 1999, 54, 1383
Tade M. O., Tian Y.-C., Conversion inference for ETBE reactive distillation, Seperation and Purification Technology., 2000, 19, 85
Tuchlenski A., Beckmann A., Reusch D., Dussel R., Weidlich U., Janowsky R., Reactive distillation- industrial applications, process design & scale-up, Chem. Eng. Sci., 2001, 56, 387
Werner I., Koger C.S., Deanovic L.A., Hinton D.E., Toxicity of methyl-tert-butyl-ether to freshwater organisms, Environmental
Pollution., 2001, 1, 83
White Ressell D., Daughtrey Wayne C., Wells Mike S., Health effects inhaled tertiary amyl methyl ether and ethyl tertiary butyl ether, Toxicology Letters, 1995, 82, 719
Yang Bo-Lun, Yang San-Ba, Yao Rui-qing, Synthesis of ethyl tert-butyl alcohol and ethanol on strong acid cation-exchange resins, Reactive and Functional Polymers., 2000, 44,167
張全勝, 觸媒與製程, 1994, 3, 54
翁鴻山, 工研院化工所主辦工業觸媒及活性碳應用人才訓練班講義,
2001
林裕川, 國立成功大學化工研究所碩士論文, 2002