簡易檢索 / 詳目顯示

研究生: 張哲華
Chang, Che-Hua
論文名稱: 厚度對於鉻及銻共摻硒化鉍拓樸絕緣體其磁電性影響之研究
Thickness-dependent Transport and Magnetic Properties of (Cr, Sb)-doped Bi2Se3
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 46
中文關鍵詞: 拓樸絕緣體磁性摻雜分子束磊晶超導量子干涉儀
外文關鍵詞: topological insulator, magnetic doping, MBE, SQUID
相關次數: 點閱:129下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體近年來成為許多人研究的主力,因為擁有許多舊的材料所沒有的特性,所以近年來大量的研究產生。許多人認為拓樸絕緣體有這很大的應用潛力,因為拓樸絕緣體在理論上會有機會出現無耗散的導電特性,若拿來做成應用將會是非常受到歡迎的材料。
    有許多研究著重於不同比例和元素的摻雜,也有許多研究著重於不同層之間的交互作用,而在不同層之間的需要先克服一個問題--厚度,先解決厚度的問題才有辦法往下做更精確的調控或是原件上的製作,以達到最好的電或磁性效果。
    本實驗樣品是透過分子束磊晶成長的拓樸絕緣體,在經過厚度的調整後,發現經過磁性摻雜後的拓樸絕緣體在8~10奈米左右會有最佳的電性,而若是降到低溫則電性表現會更加良好,此外,我們也在四元樣品中改變Sb比例,利用超導量子干涉儀看樣品的磁性貢獻,發現Sb在某一個比例時,會有最大的磁性貢獻效果,若是將此一比例繼續延用至厚度改變上,相信會有著更多的磁性特性出現。

    Topological insulator is a kind of new material which attracted a lot of research devoted in it. The reason that caused so many research focus on it is its special transport property. We can tune its fermi level by varying the thickness so that the fermi level lies in the band gap, and it can prevent our measurement being affected by the bulk conduction band. In our experiment, all the films are grown by molecular beam epitaxy (MBE) which is an ultra-high vacuum epitaxy equipment. We use sapphire as our substrate. By varying the thickness of magnetic doping films, the resistance of Cr-doped (Bi, Sb)2Se3 topological insulators are larger in the thicker sample. But the carrier density has the minimum at the thickness around 8 nm. Besides, we found that the magnetization will be affected by the doping quantity of Sb. In the measurement by SQUID, there is a specific Sb/Bi ratio that we can observe the greatest magnetization. No matter raising or lowering the portion of Sb, the magnetization will become less. The temperature will also change the carrier density. At temperature of 17K, the carrier density is even lower, and the trend of different thickness remains the same. The lowest carrier density is still at around 8 nm.

    摘要 i Extended Abstract ii 致謝 viii 目錄 ix 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1-1 前言 1 1-2 拓樸絕緣體簡介及特性介紹 2 1-3 文獻回顧 4 1-3-1 厚度對於拓樸絕緣體的影響 4 1-3-2 銻摻雜對拓樸絕緣體的影響 6 1-3-3 鉻摻雜對拓樸絕緣體的影響 8 1-4 研究動機 10 第二章 原理介紹 11 2-1 薄膜成長原理 11 2-2 薄膜成長模式 11 2-3 霍爾效應 13 2-3-1 古典理論中的霍爾效應 13 2-3-2 異常霍爾效應 15 第三章 實驗儀器介紹與實驗步驟 17 3-1 分子束磊晶系統 17 3-1-1 磊晶真空設備 17 3-1-2 磊晶蒸鍍設備 20 3-2 樣品結構量測設備 21 3-2-1 反射式高能量電子繞射儀 21 3-2-2 X光繞射儀 23 3-2-3 原子力顯微鏡 24 3-2-4 拉曼光譜儀 24 3-3 樣品製作介紹 26 3-3-1 MBE成長之薄膜 26 3-3-2 樣品結構確認 26 3-3-3 蝕刻樣品 27 3-4 樣品量測方法 28 3-4-1 電性量測 28 第四章 實驗結果與討論 30 4-1 樣品結構與成分確認 30 4-2 拓樸絕緣體Cr(Bi, Sb)2Se3的磁性貢獻 35 4-3 厚度對於電性之影響 37 第五章 結論 44 參考文獻 45

    [1] Yi Zhang, Cui-Zu Chang, Ke He, , Li-Li Wang, Xi Chen, Jin-Feng Jia, Xu-Cun Ma, , and Qi-Kun Xue, Appl. Phys. Lett. 97, 194102 (2010)
    [2] Cui-Zu Chang, Peizhe Tang, Yi-Lin Wang, Xiao Feng, Kang Li, Zuocheng Zhang, Yayu Wang, Li-Li Wang, Xi Chen, Chaoxing Liu, Wenhui Duan, Ke He, Xu-Cun Ma, and Qi-Kun Xue, PRL 112, 056801 (2014)
    [3] Xiao Feng , Yang Feng , Jing Wang , Yunbo Ou , Zhenqi Hao , Chang Liu , Zuocheng Zhang, Liguo Zhang , Chaojing Lin , Jian Liao , Yongqing Li , Li-Li Wang , Shuai-Hua Ji , Xi Chen , Xucun Ma , Shou-Cheng Zhang , Yayu Wang , Ke He , and Qi-Kun Xue, Adv. Mater., 28, 6386–6390 (2016)
    [4] Yong Seung Kim, Matthew Brahlek, Namrata Bansal, Eliav Edrey, Gary A. Kapilevich, Keiko Iida, Makoto Tanimura, Yoichi Horibe, Sang-Wook Cheong, and Seongshik Oh, PHYSICAL REVIEW B 84, 073109 (2011)
    [5] V. K. Maurya and S. Patnaik, AIP Conf. Proc. 1591, 1239-1241 (2014)
    [6] Yunbo Ou, Chang Liu, Liguo Zhang, Yang Feng, Gaoyuan Jiang, Dongyang Zhao, Yunyi Zang, Qinghua Zhang, Lin Gu, Yayu Wang, Ke He, Xucun Ma, and Qi-Kun Xue, APL MATERIALS 4, 086101 (2016)
    [7] Minhao Liu, Jinsong Zhang, Cui-Zu Chang, Zuocheng Zhang, Xiao Feng, Kang Li, Ke He, Li-li Wang, Xi Chen, Xi Dai, Zhong Fang, Qi-Kun Xue, Xucun Ma, and Yayu Wang, PRL 108, 036805 (2012)
    [8] Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, Zhong-Qing Ji, Yang Feng, Shuaihua Ji, Xi Chen, Jinfeng Jia, Xi Dai, Zhong Fang, Shou-Cheng Zhang, Ke He, Yayu Wang, Li Lu, Xu-Cun Ma, Qi-Kun Xue, SCIENCE VOL 340 (2013)
    [9] Namrata Bansal, Yong Seung Kim, Matthew Brahlek, Eliav Edrey, and Seongshik Oh, PRL 109, 116804 (2012)
    [10] X. F. Kou, W. J. Jiang, M. R. Lang, F. X. Xiu, L. He, Y. Wang, Y. Wang, X. X. Yu, A. V. Fedorov, P. Zhang, and K. L. Wang, JOURNAL OF APPLIED PHYSICS 112, 063912 (2012)
    [11] Cui-Zu Chang, Jinsong Zhang, Minhao Liu, Zuocheng Zhang, Xiao Feng, Kang Li, Li-Li Wang, Xi Chen, Xi Dai, Zhong Fang, Xiao-Liang Qi, Shou-Cheng Zhang, Yayu Wang, Ke He, Xu-Cun Ma, and Qi-Kun Xue, Adv. Mater., 25, 1065–1070 (2013)
    [12] Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang and Shou-Cheng Zhang, NATURE PHYSICS VOL 5 (2009)
    [13] Cheng Zhang, Xiang Yuan, Kai Wang, Zhi-Gang Chen, Baobao Cao, Weiyi Wang, Yanwen Liu, Jin Zou, and Faxian Xiu, Adv. Mater. , 26, 7110–7115 (2014)
    [14] 廖至為,國立成功大學物理研究所碩士論文,2016
    [15] 鄧志翔,國立成功大學物理研究所碩士論文,2015

    下載圖示 校內:2020-12-31公開
    校外:2022-08-11公開
    QR CODE