簡易檢索 / 詳目顯示

研究生: 陳立敏
Chen, Li-Ming
論文名稱: 結合表面活化與硬模板法合成包覆奈米碳管或氧化矽球之中孔洞氧化矽、中孔洞沸石,與碳材、金屬氧化物空心球
Using Surface-Activation and Hard-Templating Methods to Prepare CNT@ or Silica Sphere@Mesoporous Silica, Mesoporous Zeolite and Mesoporous Carbon and Metal Oxide Hollow Spheres
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 中孔洞氧化矽碳材金屬氧化物沸石
外文關鍵詞: mesoporous silica, carbon, metal oxide, zeolite
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中孔洞氧化矽材料與碳材具有高表面積、高孔隙率、高熱穩定性及孔洞分佈均一等優點,因此廣泛應用在吸附與催化、模板劑、電極等領域。本實驗以明膠做為表面活化劑,形成中孔洞氧化矽包覆氧化矽球(SS@MS)以及奈米碳管(CNT@MS)之核-殼型之複合材料做為硬模版,前者能夠合成出各種空心狀之中孔洞碳材及金屬氧化物,後者則合成出中孔洞碳複合材料與沸石。
    第一部份研究著重於氧化矽球表面進行界面活性劑與矽酸鈉的自組裝,反應條件是在pH~5.0的溶液中,經由水熱100℃反應一天,能夠獲得分散性良好以及包覆型態佳的SSS@MS材料,其後用0.6 M硫酸移除明膠,並做為硬模板,藉由氧化矽的孔洞特性吸附碳源,在高溫下裂解後使用5% 的HF移除氧化矽球,能夠完整拓印出單分散性中空球狀的碳材。接著含浸鋁和鋯前驅物,在高溫下移除碳材時,氧化鋯無法承受高溫而使結構崩解,而氧化鋁依然可以維持中空球狀構型,其鋁前驅物與碳材重量比例為0.6:0.5時具有較佳的外觀形貌。
    第二部份則是複製上述的合成方法,較佳的反應條件是在pH~4.0、水熱一天後再經由450℃鍛燒移除明膠,同樣可獲得包覆良好的CNT@MS材料,此時將合成好的CNT@MS材料,同時與CNT分別填充於環氧化樹脂基材內,結果顯示CNTs@MS-epoxy材料有較高的分散性以及較好的熱導性。另外,CNT@MS也可做為合成CNT@Mesoporous carbon (CNT@MC)之複合材料的硬模板,藉由氧化矽吸附碳源後高溫裂解並使用5% HF移除氧化矽,即可獲得分散性良好以及包覆型態佳的CNT@MC材料,以循環伏安測試其電容行為,在500 mV/s所形成的CV曲線圖仍呈現矩形狀,並在快速充放電的過程中仍可維持高的電容保留率,未來有機會取代傳統電解電容做為電能儲存裝置之應用。
    另一方面,利用CNT的奈米尺寸的優勢,將上述合成的CNT@MS材料用以合成沸石,得以縮小ZSM-5型沸石至奈米尺寸,增加外表面積和縮短內部擴散路徑,同時增加中孔洞結構,經與天然氧化矽成分和試藥級藥品所合成的沸石比較,結果顯示CNT@MS以及天然穀類作物所合成的沸石顆粒尺寸過大;而由化學藥品合成的沸石尺寸有縮小化的趨勢,且表面具有許多孔洞,有利於催化反應。

    Mesoporous silicas and carbons with high surface area, large porosity, high thermal stability, are of the great interest of its extensive applications, such as catalyst, adsorbents, hard templates and electrode materials. In this research, gelatin was used as surface-activation agent and silica sphere (SS) synthesized using Stöber method and carbon nanotubes (CNT) was used as hard-template to prepare silica sphere@ or CNT@mesoporous silica composites. Combining with impregnation or steaming methods, mesoporous carbon and metal oxides hollow spheres were conveniently synthesized using silica sphere@mesoporous silicas as hard template.
    In the first part of this thesis, we focused on selection of surface activation agent to induce silicate/surfactant assembly and condensation on the surface of silica sphere. After the pre-products was carried out in a PP bottle at 100℃ for 24 h, the well-dispersed SS@MS with core-shell structure was prepared. Using the SS@MS as hard temple, the mono-dispersed hollow carbon sphere can be obtained from impregnation of phenol-formaldehyde resin, high-temperature pyrolysis and silica removal by 5% HF etching. Finally, using the hollow carbon sphere as hard temple again, the metal oxide hollow spheres can also be prepared by impregnating a proper amount of the precursor metal ion, high-temperature calcination. The results show that thermally stable aluminum oxide replicate the hollow sphere, but zirconia oxide with a less thermal stability show the fragments of the hollow spheres.
    The second part of this thesis will demonstrate the preparation of CNTs@mesoporous silica. Using the similar synthetic procedures and compositions, the CNTs@mesoporous silica was obtained from a simple mixing of the CNT-gelatin solution and a sodium silicate solution at pH of 4.0, hydrothermal treatment, and 450oC-calcination to remove the gelatin. A versatile mesoporous silica shell have been thoroughly coated onto the surface of CNTs. Due to the polar mesoporous silica shell, the CNTs@mesoporous silica can be easily dispersed into an epoxy matrix. The mesopores structure of silica layer provides multi-functions on tuning modulus matching, improving interaction and disperse-ability between epoxy and CNTs. The epoxy/CNTs@SiO2 composites showed a superior effect on thermal conductivity than epoxy/CNTs. In addition, the preparation of CNT mesoporous carbon composites, using the CNT@mesoporous silica as hard temple, and impregnating with a carbon precursor followed by carbonization and the use HF for etching the silica shell. Through CV analysis, CNT@MC composite materials had better capacitive performance than commercial active carbon, and capacitive retention maintain near 80% at high scan rate, In the future, these materials have opportunity to replace conventional capacitors as energy storage device.
    In order to reduce the diffusion path length of the microporous zeolite, introducing the intracrystal mesopores is practicable. Because of high thermal stability of the CNT, the mesoporous ZSM-5 can be obtained from a steaming and calcination on the CNTs@MS composites. In addition to using CNTs@MS composites, other carbon/silica composites, such as cracked rice husk and PF/silica, can also be used to prepare the mesoporous zeolite. The results show that crystals size of zeolite synthesized with CNT@MS and cracked rice husk are large than that with cracked PF/silica. Mesoporous zeolite of high surface area and porosity would offer the possibility for improving catalytic performance.

    第一章 序論 1 1.1 中孔洞材料介紹 1 1.1.1 中孔洞氧化矽材 1 1.1.2 中孔洞碳材 3 1.2 界面活性劑簡介 3 1.2.1 基本性質 4 1.2.2 分類 5 1.2.3 明膠(gelatin) 6 1.3 無機物基本概念 6 1.4 空心狀材料 11 1.5 碳奈米管簡介 12 1.5.1 種類 13 1.5.2 特性 14 1.6 沸石簡介 14 1.6.1 沸石結構 16 1.6.2 分類 17 1.7 液晶基本介紹 18 1.7.1 種類 19 1.7.2 液晶顯示器的基本原理 19 第二章 實驗部分 22 2.1 化學藥品 22 2.2 實驗步驟 24 2.2.1 以SSS@MS合成空心球狀碳材與金屬氧化物之合成步驟 24 2.2.2 金屬矽酸鹽複合材料之合成步驟 25 2.3 以CNT@MS做為模板合成碳複合材料以及沸石之合成步驟 26 2.4 製備ZSM-5之沸石合成 26 2.5 儀器鑑定與分析 27 2.5.1 穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM) 27 2.5.2 氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm;BET) 27 2.5.3 掃描式電子顯微鏡 (Scanning Electron Microscopy;SEM) 27 2.5.4 X-射線繞射粉末光譜 (X- ray powder Diffraction ;XRD) 28 2.5.5 熱重分析儀 (Thermal Gravimetric Analysis;TGA) 28 2.5.6 固態核磁共振儀光譜 (Solid state NMR Spectroscopy) 28 第三章 以孔洞氧化矽包覆氧化矽球之核-殼結構做為硬模板合成各種空心式碳材及金屬氧化物 29 3.1 研究動機與實驗設計 29 3.2 氧化矽球包覆中孔洞氧化矽 (SS@MS) 的合成鑑定和應用 30 3.3 以模板法合成中空碳球之分析研究 44 3.4 合成孔洞性空心球狀金屬氧化物(Porous hollow sphere metal oxide) 49 3.5 SSS@MS在液晶顯示器之光學量測鑑定與分析 53 3.6 以金屬鹽類輔助合成金屬矽酸鹽類材料 55 第四章 合成中孔洞碳氧化矽複合材料之研究 63 4.1 研究動機與實驗設計 63 4.2 孔洞氧化矽包覆奈米碳管材料之鑑定與分析 65 4.3 中孔洞碳材包覆奈米碳管之鑑定與分析 73 4.4 ZSM-5型沸石的合成與鑑定 76 第五章 總結 84 參考文獻 86

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834-10843.
    3. V. Meynen, P. Cool and E. F. Vansant, Microporous and Mesoporous Materials, 2009, 125, 170-223.
    4. F. Tang, L. Li and D. Chen, Advanced Materials, 2012, 24, 1504-1534.
    5. C. Fox, Cosmet Toiletries, 1984, 99, 28-31.
    6. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew Chem Int Edit, 2003, 42, 3146-3150.
    7. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
    8. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
    9. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    10. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935.
    11. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
    12. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
    13. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-+.
    14. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
    15. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew Chem Int Edit, 2003, 42, 414-+.
    16. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
    17. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206-+.
    18. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
    19. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
    20. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-&.
    21. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
    22. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
    23. H. C. Foley, Microporous Materials, 1995, 4, 407-433.
    24. F. de Campo, D. Lastecoueres and J.-B. Verlhac, Chemical Communications, 1998, 2117-2118.
    25. W. Lu and D. D. L. Chung, Carbon, 1997, 35, 427-430.
    26. C. Lin, J. A. Ritter and B. N. Popov, Journal of The Electrochemical Society, 1999, 146, 3639-3643.
    27. M. Caffrey and V. Cherezov, Nat. Protocols, 2009, 4, 706-731.
    28. M.-P. Pileni, Nat Mater, 2003, 2, 145-150.
    29. R. Schrieber and H. Gareis, in Gelatine Handbook, Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 1-44.
    30. R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 1950, 72, 5705-5712.
    31. V. Alfredsson and M. W. Anderson, Chem. Mat., 1996, 8, 1141-1146.
    32. H. Chun Zeng, Current Nanoscience, 3, 177-181.
    33. J. Jang, Springer Berlin / Heidelberg, 2006, pp. 189-260.
    34. Y. R. Ma and L. M. Qi, J. Colloid Interface Sci., 2009, 335, 1-10.
    35. W. Stober, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26, 62-&.
    36. B. Liu, D. Jia, J. Rao, Q. Meng and Y. Shao, Bulletin of Materials Science, 2008, 31, 771-774.
    37. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl and R. E. Smalley, Nature, 1985, 318, 162-163.
    38. S. Iijima, Nature, 1991, 354, 56-58.
    39. K. Ding, B. Hu, Y. Xie, G. An, R. Tao, H. Zhang and Z. Liu, Journal of Materials Chemistry, 2009, 19, 3725-3731.
    40. X. Lu, H. Liu, C. Deng and X. Yan, Chemical Communications, 2011, 47, 1210-1212.
    41. A. F. Ávila and G. S. R. Lacerda, Materials Research, 2008, 11, 325-333.
    42. M. C. Hersam, Nat Nano, 2008, 3, 387-394.
    43. W. Cui, F. Du, J. Zhao, W. Zhang, Y. Yang, X. Xie and Y.-W. Mai, Carbon, 2011, 49, 495-500.
    44. C. Fernandez, I. Stan, J. P. Gilson, K. Thomas, A. Vicente, A. Bonilla and J. Perez-Ramirez, Chemistry-a European Journal, 2010, 16, 6224-6233.
    45. Z. P. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis and D. G. Vlachos, Science, 2003, 300, 456-460.
    46. H. Wang and T. J. Pinnavaia, Angewandte Chemie International Edition, 2006, 45, 7603-7606.
    47. M. Stöcker, Microporous and Mesoporous Materials, 2005, 82, 257-292.
    48. L. Gomez-Hortiguela, A. B. Pinar, F. Cora and J. Perez-Pariente, Chemical Communications, 2010, 46, 2073-2075.
    49. R. A. Sheldon, I. Arends and U. Hanefeld, Green Chemistry and Catalysis, John Wiley & Sons, 2007.
    50. S. J. Woltman, G. D. Jay and G. P. Crawford, Nat Mater, 2007, 6, 929-938.
    51. G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee and J. E. Jung, Opt. Lett., 2011, 36, 754-756.

    下載圖示 校內:2015-07-05公開
    校外:2015-07-05公開
    QR CODE