| 研究生: |
陳柏偉 Chen, Po-Wei |
|---|---|
| 論文名稱: |
滲透法及奈米添加物對Y-Ba-Cu-O超導體的超導性及微結構的影響 Study of the Superconductivity of Bulk Y-Ba-Cu-O Superconductors via Infiltration Growth (IG) Method and With Addition of Nano-Scale Additives |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 超導體 、溶膠凝膠法 、滲透法 、峰效應 |
| 外文關鍵詞: | superconductor, sol-gel, infiltration growth, peak effect |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討滲透法(Infiltration Growth, IG)製程及添加利用溶膠凝膠法(sol-gel)製備的Y2Ba4CuAgOy(Y2411(Ag))奈米等級添加物對Y-Ba-Cu-O(YBCO)超導體的影響,並與傳統頂端熔融製程(Top-Seeded Melt-Textured Growth, TSMG)的 YBCO超導體比較。研究結果指出,將CeO2添加進入IG法製備的YBCO超導體內能有效的細化超導體內Y2BaCuOy(Y211)相,能提升其低場下的臨界電流密度(critical current density,Jc),其和傳統TSMG製程樣品的結果相似。另一方面,添加CeO2的IG製備YBCO樣品(IG with CeO2)出現了峰效應(peak effect),即高磁場下的臨界電流密度獲得增加,此在YBCO系統是不常見的。微結構的結果指出IG with CeO2的樣品具有較高含量的Sm,Sm是高溫製程時從SmBCO晶種擴散進入YBCO超導塊材中形成(Y, Sm)BCO成份差異區導致峰效應的出現;然而峰效應在IG with CeO2樣品中呈現不均勻的分佈,主要是因為Sm在塊材中呈現不均勻的分佈所導致,其Sm在樣品內的分佈範圍從0.007 ~ 0.058wt%。Sm在樣品內不均勻分佈主要是受到液相在高溫時流動的影響,此外,可以發現當樣品中Sm含量大於0.015wt%時會有峰效應的出現。此峰效應分佈不均的現象可以藉著添加奈米級的Sm2O3於塊材中改善,使其內部不同位置樣品的Sm含量均高於0.015wt%而能都有峰效應的出現。IG製備的樣品因其收縮率較小的特性及具有峰效應,因此,樣品的擄獲磁場的範圍及最大值都能高於同樣生胚製備的TMSG樣品。
本研究利用溶膠凝膠法製備出相對於固態法較低溫度合成且尺寸較小的Y2411(Ag),並將其添加進入YBCO超導體中,研究結果指出,超導性質,如Jc及擄獲磁場,均能有效的藉著添加Y2411(Ag)而增加,並會隨著其添加量的增加而增加,主要是因為SEM結果指出Y2411(Ag)能以奈米等級(10-20nm)分佈於Y123的基地相中形成有效的釘扎中心而提升YBCO超導塊材的釘扎能力,因而提升其超導性質。
This study investigates the superconductivity of single grain bulk Y-Ba-Cu-O (YBCO) superconductors via infiltration growth (IG) method and with the addition of nano-scale second phases of sol-gel derived Y2Ba4CuAgOy (Y2411(Ag)) and then compared with that of the undoped YBCO bulk by traditional top-seeded melt textured growth (TSMG) method. It was found that the Y211 phases in the CeO2 doped IG-YBCO sample were smaller and well-distributed, comparing with those of other samples. Therefore, the enhancement of Jc in the self-field was observed. The result was the same as that in TSMG-YBCO samples. On the other hand, the CeO2 doped IG-YBCO sample showed a superior critical current density Jc(H,T) with a peak effect. Microstructure analysis indicated that higher concentration of Sm was found in the CeO2 doped IG-YBCO sample. The Sm which dissolved from the SmBCO seed diffused into the bulk to form compositional fluctuations of (Y, Sm)BCO and was correlated to the effective pinning in high field regions (or peak effect) to improve the Jc(H, T ) in high fields. However, it was found that the peak effect was strongly spatial dependent. The ICP-MS results showed that the concentration of Sm ranged from 5.8x10-2 to 7.0x10-3wt% within the bulk. Peak effect was only observed in regions where the concentration of Sm was higher than 1.5x10-2 wt%. The spatial distribution of Sm was attributed to the way liquid (BaCuO2 and CuO) flowed during the melting process of the IG technique. In order to suppress the spatial dependence of the composition, nano-sized Sm2O3 particles were added to the precursor powders in this study. Microstructural analysis demonstrated that with the addition of nano-sized Sm2O3, the concentration of Sm could be enhanced to be higher than 1.5x10-2 wt% within the bulk. Therefore, peak effect was obtained throughout the bulk material. In addition, the maximum trapped field value and trapped field profile of the CeO2 doped sample grown by IG were larger than that of samples grown by TSMG using the same diameter of precursor pellets.
The sol-gel process was used to fabricated smaller Y2411(Ag) precursors at a relative low reaction temperature than the solid state reaction. It was seen that the enhanced Jc and trapped fields were obtained in bulk YBCO superconductors with the addition of Y2411(Ag) particles. Jc was observed to increase with an increasing Y2411(Ag) content, which was the same as for the trapped fields results. Microstructural observations showed nano-scale of 10-20 nm Y2411(Ag) particles distributed homogeneously throughout the sample. These nano-scale Y2411(Ag) particles resulted in the enhancement of Jc and the trapped fields in YBCO samples doped with sol-gel Y2411(Ag) particles. This demonstrated that the potential of the addition of Y2411(Ag) to the precursor composition for fabricating YBCO bulk superconductors with high performance.
1. J. G. Bednorz and K. A. Muller, “Possible High Tc Superconductivity in the Ba-La-Cu-O system.” Z. Phys.B 64, 189 (1986)
2. M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R.L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure.” Phys. Rev. Lett. 58, 908 (1987)
3. J. H. Schön, Ch. Kloc and B. Batlogg, “Superconductivity at 52 K in hole-doped C60.”, Nature 408, 549 (2000)
4. J. H. Schon, Ch. Kloc and B.Batlogg, “ High-Temperature Superconductivity in Lattice-Exapnded C60”, Science 29, 2432 (2001)
5. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, “Superconductivity at 39K in magnesium diboride.”, Nature 410, 63 (2001)
6. K. Shimizu, H. Ishikawa, D. Takao, T. Yagi and K. Amaya. “Superconductivity in compressed lithium at 20 K.”, Nature 419, 597 (2002)
7. M. Cyrot and D. Pavuna, “Introduction to Superconductivity and High-Tc Materials.”, World Scientific, (1992)
8. Y. Shiohara and A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials.”, Mat. Sci. Eng. 1-2, R19 (1997)
9. S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. van Dover, G.W. Kammlott, R.A. Fastnacht and H.D. Keith,” High critical currents in Y‐Ba‐Cu‐O superconductors.”, Appl. Phys.Lett. 52, 2074 (1988)
10. 金重勳, 磁性技術手冊,中華民國磁性技術協會出版,民國九十一年七月。
11. K. Salama, B. Selvamanickam, L. Gao and K. Sun, “High current density in bulk YBa2Cu3Ox superconductor.”, Appl. Phys. Lett. 54, 2352 (1989)
12. H. Hojaji, K.A. Michael, A. Barkatt, A.N. Thorpe, F.W. Matthew, I.G. Talmy, D.A. Haught and S. Alterescu, “A comparative study of sintered and melt-grown recrystallized YBa2Cu3Ox.”, J. Mater. Res. 4, 28 (1989)
13. C. Varanasi and P.J. McGinn, “Effect of YBa2Cu3O7−x grain size on the nucleation of Y2BaCuO5 during melt texturing.”, Mater. Lett. 17, 205 (1993)
14. M. Morita, S. Takebayashi, M. Tanaka and K. Kimura, “Quench and Melt Growth (QMG) Process for Large Bulk Superconductor Fabrication”, Advanced Superconductors 3, 733 (1991)
15. K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura and K. Miyamoto, “High Magnetic Flux Trapping by Melt-Grown YBaCuO Superconductors.”, Jpn. J. Appl. Phys. 30, L1157 (1991)
16. X. Chaud, D. Isfort, E. Beaugnon and R. tournier, “Isothermal growth of large YBa2Cu3O7-x single domains up to 93mm.”, Physica C 341-348, 2413 (2000)
17. Y. Shiohara and A. Endo, “Crystal growth of bulk high-Tc superconducting oxide materials.”, Mat. Sci. Eng. 1-2, R19 (1997)
18. M. Murakami, “Melt Processed High-Temperature Superconductors.”, World Scientific, (1992)
19. X. L. Xu, J. D. Guo, Y. Z. Wang and A. Sozzi, “Synthesis of nanoscale superconducting YBCO by a novel technique.”, Phys. C 371, 129 (2002)
20. R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak and D. Werder, “Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7–δ.”, Nature 329, 423 (1987)
21. K. Iida, N. H. Babu, Y. Shi and D. A. Cardwell, “Seeded infiltration and growth of large, single domain Y–Ba–Cu–O bulk superconductors with very high critical current densities.”, Supercond. Sci. Technol. 18, 1421 (2005)
22. Y. L. Chen, H. M. Chan, M. P. Harmer, V. R. Todt, S. Sengupta and D. Shi, “A new method for net-shape forming of large, single-domain YBa2Cu3O6 + x .”, Phys. C 234, 232 (1994)
23. N. Hair Babu and T. Rajasekharan, “Infiltration-Growth Processing of NdBa2Cu3O7- Superconductor.”, J. Am. Ceram. Soc. 82, 2978 (1999)
24. N. V. N. Viswanath, T. Rajasekharan, N. H. Kumar, L .Menon and S. K. Malik, “Infiltration-growth processing of SmBa2Cu3Oy superconductor.”, Supercond. Sci. Technol. 11, 420 (1998).
25. E. Sudhakar Reddya and T. Rajasekharan, “Shape Forming Simultaneous with Jc Enhancement in REBa2Cu3O7 Superconductors.”, J. Mater. Res. 13, 2472 (1998)
26. E. Sudhakar Reddya and T. Rajasekharan, “Fabrication of textured REBa2Cu3O7/RE2BaCuO5 (RE = Y, Gd) composites by infiltration and growth of RE2BaCuO5 preforms by liquid phases.”, Supercond. Sci. Technol. 11, 523 (1998)
27. E. Sudhakar Reddya and T. Rajasekharan, “Microstructural and magnetic properties of textured GdBa2Cu3Oy/Gd2BaCuO5 composites fabricated from Gd2BaCuO5 preforms”, Phys. C 316, 279 (1999)
28. J. P. Mathieu, T. Koutzarova, A. Rulmont, J. F. Fagnard, P. Laurent, B. Mattivi, Ph. Vanderbemden, M. Ausloos and R. Cloots, “Investigation of DyBa2Cu3O7−d superconducting domains grown by the infiltration technique starting with small size Dy-211 particles.”, Supercond. Sci. Technol. 18, S136 (2005)
29. S. Meslin and J. G. Noudem, “Infiltration and top seeded grown mono-domain YBa2Cu3O7−x bulk superconductor.”, Supercond. Sci. Technol. 17, 1324 (2004)
30. S. Meslin, K. Iida, N. Hari Babu, D. A. Cardwell and J. G. Noudem, “The effect of Y-211 precursor particle size on the microstructure and properties of Y–Ba–Cu–O bulk superconductors fabricated by seeded infiltration and growth.”, Supercond. Sci. Technol. 19, 711 (2006)
31. R. Cloots, T. Koutzarova, J. P. Mathieu and M. Ausloos, “From RE-211 to RE-123. How to control the final microstructure of superconducting single-domains.”, Supercond. Sci. Technol. 18, R9 (2005)
32. E. Sudhakar Reddya and T. Rajasekharan, “Effect of Gd2BaCuO5 content on the macro-defect structure of melt processed GdBa2Cu3Oy superconductor.”, Supercond. Sci. Technol. 11, 183 (1998)
33. J. G. Noudem, S. Meslin, D. Horvath, C. Harnois, D. Chateigner, S. Eve, M. Gomina, X. Chaud and M. Murakami “Fabrication of textured YBCO bulks with artificial holes.”, Physica C 463, 301 (2007).
34. M. Gomina, X. Chaud and M. Murakami, “Fabrication of textured YBCO bulks with artificial holes.”, Phys. C 463–465, 301 (2007)
35. E. Sudhakar Reddya and G. J. Schmitz, “Recent developments in processing and properties of large grain superconducting YBCO fabrics.”, Supercond. Sci. Technol. 15, 727 (2002)
36. E. Sudhakar Reddy, J. G. Noudem, M. Tarka and G. J. Schmitz, “Mono-domain YBa2Cu3Oy superconductor fabrics prepared by an infiltration process.”, Supercond. Sci. Technol. 13, 716 (2000)
37. T. Hatano, A. Matsushita, K. Nakamura, Y. Sakka, T. Matsumoto and K. Ogawa, “Superconducting and Transport Properties of B-Y-Cu-O Compounds –Orthorhombic and Tetragonal Phases.”, Jpn. J. Appl. Phys. 26, L721 (1987)
38. T. B. Lindemer, J. F. Hunley, J. E. Gates, Jr. A. L. Sutton, J. Brynestad, C. R. Hubbard and P. K. Gallagher, “Experimental and Thermodynamic Study of Nonstoichiometry in 〈YBa2Cu3O7-x〉.”, J. Am. Ceram. Soc. 72, 1775 (1989)
39. B.J. Lee and D.N. Lee, “Thermodynamic Evaluation for the Y2O3–BaO–CuOx System.”, J. Am. Ceram. Soc. 74, 78 (1991)
40. J. Raittila, H. Huhtinen, P. Paturi and Yu.P. Stepanov,” Preparation of superconducting YBa2Cu3O7-y nanopowder by deoxydation in Ar before final oxygenation.”, Phys. C 371, 90 (2002)
41. N. Plakida “High-Temperature Cuprate Supercondcutors Experiment, Theory and Applications.”, Springer Series in SOLID-STATE SCIENCES, New York (2010)
42. G. Krabbes, G. Fushs, W.-R Canders, H. May and R. Pallka “High-Temperature Superconductor Bulk Materials.”, WILEY-VCH GmbH Co. KGaA, Weinheim, (2006)
43. M. Tomita, and M. Murakami, “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.”, Nature 421, 517(2003)
44. H. Fujimoto, C. Cai and E. Ohtabara, “Sm–Ba–Cu–O bulk superconductors melt-processed in air.”, Physica C 372-376, 1111 (2002)
45. 許書豪, 單晶粒c-oriented NdBaCuO/Ag高溫超導體之製程與性質研究, 國立成功大學材料科學及工程學系碩士論文,中華民國九十年六月
46. Y. A. Jee, G. W. Hong, C. J. Kim and T. H. Sung, “Dissolution of SmBa2Cu3O7-y seed crystals during top-seeded melt growth of YBa2Cu3O7-y.”, Supercond. Sci. Technol. 11, 650 (1998)
47. C. Cai, K. Tachibana and H. Fujimoti, “Study on single-domain growth of Y1.8Ba2.4Cu3.4Oy/Ag system by using Nd123/MgO thin film as seed.”, Supercond. Sci. Technol. 13, 698 (2000)
48. C. Cai and H. Fujimoto, “Effects of Nd123/MgO Thin Film and MgO Single-crystal Seeds in Isothermal Solidification of YBaCuO/Ag.”, J. Mater. Res. 15, 1742 (2000)
49. C. Cai, H. Mori, H. Fujimoto, H. Liu and S. Dou, “Crystal growth patterns in MgO seeded Y1.8Ba2.4Cu3.4Oy/Ag melt-texturing process.”, Physica C 357-360, 734 (2001)
50. C. Cai and H. Fujimoto, “Stable production of large single-domain Y1.8Ba2.4Cu3.4Oy/Ag by isothermal solidification.”, Physica C 357-360, 709 (2001)
51. H. Taguchi, D. Matsuda and M. Nagao,” Synthesis of Perovskite-Type (La1−xSrx)MnO3 (O X 0.3) at Low Temperature”, J. Am. Ceram. Soc. 75, 201 (1992)
52. H. Fujimoto, H. Ozaku and E. Ohtabara, “Sm–Ba–Cu–O bulk superconductors melt processed in air, using Nd123/MgO thin film cold seeding.”, Physica C 386, 198 (2003)
53. W. Lo and D.A. Cardwell, “Investigation of the controlled growth of large undoped and Pt-containing YBCO pseudo-crystals.”, Mat. Sci. Eng. B 53, 45 (1998)
54. C. J. Kim, Y. A. Jee and G. W. Hong, “Variables affecting the fabrication of single grain YBa2Cu3O7-y superconductors by the top-seeded melt growth process.”, Supercond. Sci. Technol. 13, 709 (2000)
55. Y. Nakamura, A. Endo and Y. Shiohara, “The relation between the undercooling and the growth rate of YBa2Cu3O6+x superconductive oxide.”, J. Mater. Res. 11, 1094 (1996)
56. A. Endo, H.S. Chauhan, Y. Nakamura and Y. Shiohara, “Relationship between growth rate and undercooling in Pt-added Y1Ba2Cu3O7−x.”, J. Mater. Res. 11, 1114 (1996)
57. M. Kambara, N. Hari Babu, Y. H. Shi and D.A. Cardwell, “Growth of melt-textured Nd-123 by hot seeding under reduced oxygen partial pressure.”, J. Mater. Res. 16, 1163 (2001)
58. N. Hayashi, P. Diko, K. Nagashima, S.I. Yoo, N. Sakai and M. Murakami, “Fabrication of large single-domain Sm123 superconductors by OCMG method.”, Mat. Sci. Eng. B 53, 104 (1998)
59. M. Murakami, “Processing of bulk YBaCuO.”, Supercond. Sci. Technol. 5, 185 (1992)
60. N. Ogawa, I. Hirabayashi and S. Tanaka, “Preparation of a high-Jc YBCO bulk superconductor by the platinum doped melt growth method.”, Phys. C 177, 101 (1991)
61. C. J. Kim, H. W. Park, K. B. Kim and G. W. Hong, “New method of producing fine Y2BaCuO5 in the melt-textured Y-Ba-Cu-O system: attrition milling of YBa2Cu3Oy-Y2BaCuO5 powder and CeO2 addition prior to melting.”, Supercond. Sci. Technol. 8, 652 (1995)
62. S. Y. Chen, I. G. Chen and M. K. Wu, “The effect of Pd/Pt addition on the superconductivity of Sm-Ba-Cu-O materials.”, Supercond. Sci. Technol.15, 741 (2002)
63. C. C. Wang, S. Y. Chen, P. A. Lai, I. G. Chen and M. K. Wu “Study of the heterogeneous nucleation of 211-particle by the addition of CeO2 precursor with different sizes.”, IEEE Trans. Appl. Supercond. 15, 3118 (2005)
64. S. Pinol, F. Sandiumenge, B. Martinez, V. Gomis, J. Fontcuberta, X. Obradors, E. Snoeck, and Ch. Roucau, “Enhanced critical currents by CeO2 additions in directionally solidified YBa2Cu3O7.”, Appl. Phys. Lett. 65 1448 (1994)
65. K. Iida, N. Hari Babu, Y. Shi and D. A. Cardwell, “Seeded infiltration and growth of large, single domain Y–Ba–Cu–O bulk superconductors with very high critical current densities.”, Supercond. Sci. Technol. 18, 1421 (2005)
66. S. Nariki, N. Sakai, M. Murakami and L. Hirabayashi, “Processing of high-performance (Gd, Y)-Ba-Cu-O bulk superconductors with fine RE211 pinning centers.”, IEEE Trans. Appl. Supercond. 15, 3110 (2005)
67. M. Muralidhar, N. Sakai, M. Jirsa, M. Murakami and N. Koshizuka, “Magnetic levitation in liquid oxygen and its applications.”, Phys. C 412–414, 739 (2004)
68. 陳詩芸,添加物對單晶粒釤鋇銅氧超導體微結構及釘扎特性研究, 國立成功大學材料科學及工程學系博士論文,中華民國九十三年一月
69. P. S. Hsieh, S. Y. Chen, I. G. Chen and M. K. Wu, “Flux pinning at high magnetic field in melt-processed SmBa2Cu3O7 with nanocrystalline Sm211/Nd422 additives.”, Supercond. Sci. Technol. 18, S111 (2005)
70. S. Y. Chen, P. C. Hsieh, I. G. Chen and M. K. Wu, “Effect of nano-sized Sm2BaCuO5 particles addition on the pinning mechanism of Sm–Ba–Cu–O materials.”, J. Mater. Res.19, 843 (2004).
71. S. Y. Chen, Y. C. Liao, I. G. Chen and M. K. Wu, “Effect of different nanoscale RE2BaCuO5 additions on the formation of compositional fluctuation in Sm-Ba-Cu-O superconducting bulk materials.”, J. Mater. Res.20, 482 (2005)
72. S. Y. Chen, Y. C. Liao, I. G. Chen and M. K. Wu, “Concentration effect on high field pinning and transport behaviors in nano-Y2BaCuO5 doped Sm–Ba–Cu–O superconductor.”, J. Appl. Phys. 99, 08M508 (2006)
73. M. Murakami, N. Sakai, T. Higuchi and S. I. Yoo, “Melt-processed light rare earth element - Ba - Cu – O.”, Supercond. Sci Technol. 11, 1015 (1996)
74. S. Y. Chen, A. Gloter, C. Colliex, I. G. Chen and M. K. Wu, “Nano-scale Pinning Centers in Nano-scale Y2BaCuO5 doped Sm-Ba-Cu-O Superconductor.”, IEEE Trans. Appl. Supercond. 17, 2057 (2007)
75. N. Hari Babu, Y. H. Shi, K. Iida, D. A. Cardwell, S. Haindl, M. Eisterer and H. W. Weber, “Processing of large, single grain YBa2Cu3O7−δ/Y2BaCuO5/Y2Ba4CuNbOy bulk composites.”, Phys. C 426–431, 520 (2005)
76. N. Hari Babu, E. S. Reddy, D. A. Cardwell and A. M. Campbell, “New chemically stable, nano-size artificial flux pinning centres in (RE)–Ba–Cu–O superconductors.”, Supercond. Sci. Technol.16, L44 (2003)
77. N. Hari Babu, K. Iida, Y. Shi, T. D. Withnell and D. A. Cardwell, “YBa2Cu3O7−δ/Y2Ba4CuMOy single grain nanocomposite superconductors with high critical current densities.”, Supercond. Sci. Technol. 19, S461 (2006)
78. D. A. Cardwell and N. Hari Babu, “Improve magnetic flux pinning in bulk (RE)BCO superconductors.”, Adv. Cry. Eng. 54, 543 (2008)
79. R. Weinstein, R. Sawh, Y. Ren and D. Parks, “The role of uranium, with and without irradiation, in the achievement of Jc ≈ 300000 A cm−2 at 77 K in large grain melt-textured Y123.”, Mater. Sci. Eng. B 53, 38 (1998)
80. N. Hari Babu, M. Kambara, Y. Shi, D. A. Cardwell, C. D. Tarrant and K. R. Schneider, “The chemical composition of uranium-containing phase particles in U-doped Y–Ba–Cu–O melt processed superconductor.”, Phys. C 392–396, 110 (2003)
81. Bokhimi, A. Morales and A. Garc´ıa-Ruiz “Crystalline structure of Ba2YCu0.25W0.75O6: A member of the new set of Ba2YzCuxW1-xO6 solid solutions.”, Powder Diffract. 11, 42 (1996)
82. N. Hari Babu, Y.-H. Shi, S.K. Pathak, A.R. Dennis and D.A. Cardwell, “Developments in the processing of bulk (RE)BCO superconductors.”, Phys. C 471, 169 (2011)
83. N. Hari Babu and K. Iida, “Flux pinning in melt-processed nanocomposite single-grain superconductors.”, Supercond. Sci. Technol. 20, S141 (2007)
84. Y. Shi, N. H. Babu, K. Iida, W. K. Yeoh, A. R. Dennis and D. A. Cardwell, “The influence of Gd-2411(Nb) on the superconducting properties of GdBCO/Ag single grains.”, Supercond. Sci. Technol. 22, 075025 (2009)
85. F. Lange, “The effect of rates of change of magnetic field and of temperature on flux jumps in Nb3Sn hollow cylinders.”, Cryogenics 5, 143 (1965)
86. M. Rabinowitz, H. W. Arrowsmith and S. D. Dahlgren, “Dependence of maximum trappable field on superconducting Nb3Sn cylinder wall thickness.”, Appl. Phys. Lett. 30, 607 (1977)
87. R. N. Singh, S. K. Tiwari, S. P. Singh, N. K. Singh, G. Poillerat and P. Chartier, “Synthesis of (La, Sr)CoO3 perovskite films via a sol–gel route and their physicochemical and electrochemical surface characterization for anode application in alkaline water electrolysis”, J. Chem. Soc. Faraday Trans., 92, 2593 (1996).
88. L. Gao, Y. Y. Xue, R. L. Meng and C. W. Chu, “Thermal instability, magnetic field shielding and trapping in single‐grain YBa2Cu3O7−δ bulk materials.”, Appl. Phys. Lett. 64, 520 (1994)
89. J. S. Wang, S. Y. Wang,Y. W. Zeng, C. Y. Deng, Z. Y. Ren, X. R. Wang, H. H. Song, X. Z. Wang, J. Zheng and Y. Zhao, “The present status of the high temperature superconducting Maglev vehicle in China.”, Supercond. Sci. Technol. 18, S215-S218 (2005)
90. JCPDS-ICCD, PDF-number:50-1866
91. JCPDS-ICCD, PDF-number:38-1434
92. JCPDS-ICCD, PDF-number:38-1402
93. B. Khaykovich, E. Zeldov, D. Majer, T. W. Li, P. H. Kes and M. Konczykowski,” Vortex-Lattice Phase Transitions in Bi2Sr2CaCu2O8Crystals with Different Oxygen Stoichiometry”, Phys. Rev. Lett. 76, 2555 (1996)
94. B. Khaykovich, M. Konczykowsk, E. Zeldov, R. A. Doyle, D. Majer, P. H. Kes and T. W. Li, “Vortex-Matter Phase Transitions in Bi2Sr2CaCu2O8: Effects of Weak Disorder”, Phys. Rev. B 56, R517 (1997)
95. S.Y. Chen, I. G. Chen, C. P. Liu, P. C. Hsieh and M. K. Wu,” The relationship between nano-scale Sm211/Sm123 interfaces and superconductivity of Sm-Ba-Cu-O materials.”, IEEE Trans. Appl. Supercond. 13 3180 (2003)
96. M. Jirsa, M. Muralidha, M. Murakami, K. Noto, T. Nishizaki and N. Kobayashi, “Jc-B performance study of an OCMG (Nd-Eu-Gd)-123 material doped by sub-micrometre Gd-211 particles.”, Supercond. Sci. Technol. 14, 50 (2001)
97. M. Murakami, S. I. Yoo, T. Higuchi, N. Sakai, J. Weltz, N. Koshizuka, and S. Tanaka, “Flux pinning in melt-grown NdBa2Cu3Oy and SmBa2Cu3Oy superconductors”, Jpn. J. Appl. Phys., 33 L715 (1994)
98. C. D. Dewhurst, W. Lo, Y.H. Shi, and D.A. Cardwell, “Homogeneity of superconducting properties in SmBa2Cu3O7--seeded melt processed YBCO.”, Mater. Sci. Eng. B, 53 169 (1998)
99. T. Y. Li, L. Cheng, S. B. Yan, L. J. Sun, X. Yao, Y. Yoshida and H. Ikuta, “Growth and superconductivity of REBCO bulk processed by a seed/buffer layer/precursor construction.”, Supercond. Sci. Technol., 23, 125002 (2010)
100. J. C. L. Chow, H.T. Leung, W. Lo, and D. A. Cardwell, “Analysis of the spatial distribution of Y2BaCuO5 inclusions in large-grain YBa2Cu3O7-”, J. Mater. Res., 33, 1083 (1998)
101. T. Nakashima, Y. Ishii, T. Katayama, H. Ogino, S. Horii, J. Shimoyama and K. Kishio, “Novel functions of silver on superconducting properties for RE123 melt-solidified bulks”, J. Phys.: Conf. Ser. 97, 012007 (2008)
102. H. K. Onees, Commun. Phys. Lab., 12, 120 (1911)
103. http://www.superox.ru/en/histori_superconductivity.htm
104. G. Krabbes, G. Fuchs, W. –R. Canders, H. May, R. Pallka, “High Temperature Supercondcutor Bulk Materials”, Wiley-VCH Verlag GmbH, (2006)