簡易檢索 / 詳目顯示

研究生: 蔡旻曉
Tsai, Min-Hsiao
論文名稱: 模型區別與參數估計的準則穩健最適設計之研究
A Study on Criterion-Robust Optimal Designs for Model Discrimination and Parameter Estimation
指導教授: 任眉眉
Zen, Mei-Mei
學位類別: 博士
Doctor
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 107
中文關鍵詞: 有效性多重目的最適性準則傅立葉迴歸模型多項式迴歸模型Mr*-最適設計小中取大原則正規動差Mr-最適性準則
外文關鍵詞: efficiency, canonical moment, Fourier regression model, Mr-optimality criterion, polynomial regression model, multiple-objective, maximin principle
相關次數: 點閱:82下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討兩個在[-1,1]^q上的多項式迴歸模型
    (polynomial regression models)或兩個在[-π,π]上的傅
    立葉迴歸模型 (Fourier regression models) 之區別問題,
    與以往不同的是,在此我們同時將各個模型上有關參數估計
    的問題考量進來。為了獲得能有效兼顧上述模型區別與參數
    估計兩目的之實驗設計,在本研究中我們提出了一個多重目
    的最適性準則(multiple-objective optimality criterion)
    稱之Mr-最適性準則 (Mr-optimality criterion)。簡單來
    講,此一準則為Ds-有效性(用以評估一實驗設計在模型區別
    表現上優劣與否的指標)及D-有效性(用以評估一實驗設計在
    參數估計表現上優劣與否的指標) 的加權幾何平均數,其主
    要特色是除了給予r(0≦r≦1)的權重於模型區別目的外,另
    一方面亦對參數估計給予(1-r)的權重保障。在此Mr-最適性
    準則下,我們利用正規動差(canonical moments) 的技巧成
    功地解得其所對應的Mr-最適設計(Mr-optimal design)的解
    析解。此外,我們亦研究了在不同的加權選取準則下,不同
    的Mr'-最適設計在各種Mr-最適性準則下有效性的表現行為。
    更進一步地,我們應用了小中取大原則(maximin principle)
    發現 Mr'-最適設計的最小Mr-有效性值為r'的一個先增後降
    函數,且這些最小Mr-有效性值的最大值發生於r'=r*,此意
    味著所對應的Mr*-最適設計不管在任何 Mr-最適性準則下皆
    會有不錯的表現。最後,數值分析的結果亦支持此一Mr*-最
    適設計無論在多重目的考量或單一個別目的考量下均有相當
    穩健的表現。

    Consider the problem of discriminating between two
    rival polynomial regression models on the q-cube
    [-1,1]^q, qεN, or two rival Fourier regression
    models on the circle [-π,π], and estimating
    parameters in the models. In order to find
    experimental designs which are efficient for both
    purposes of model discrimination and parameter
    estimation simultaneously, we propose a general
    multiple-objective optimality criterion,
    Mr-optimality criterion, which is a weighted
    geometric average of D- and Ds-efficiencies, it
    puts weight r (0≦r≦1) for model discrimination
    and (1-r) for parameter estimation.
    The corresponding Mr-optimal design is explicitly
    derived in terms of canonical moments. Moreover,
    the behavior of the proposed Mr-optimal designs
    is investigated under different weighted selection
    criterion. Furthermore, applying the maximin
    principle on the efficiencies of experimental
    designs, the extreme value of the minimum
    Mr-efficiency of any Mr'-optimal design is obtained
    at r'=r*, which results in the corresponding
    Mr*-optimal design to be served as a criterion-
    robust optimal design for the described problem.

    中文摘要--------------------------------------------i Abstract-------------------------------------------ii Acknowledgements----------------------------------iii Contents-------------------------------------------iv List of Tables------------------------------------vii List of Figures----------------------------------viii 1 Introduction--------------------------------------1 2 Canonical Moments---------------------------------7 3 Univariate Polynomial Regression Models: PART I--10   3.1 Introduction-----------------------------------10   3.2 Construction of Mr-Optimal Design--------------14   3.3 Criterion-Robust Optimal Design----------------16     3.3.1 Efficiency of Mr-Optimal Design--------------16     3.3.2 Minimum Mr-Efficiency of Mr'-Optimal Design--17   3.4 Comparison with Some Special Designs-----------24   3.5 Concluding Remarks-----------------------------42 4 Univariate Polynomial Regression Models: PART I--43   4.1 Introduction-----------------------------------43   4.2 Construction of Mr-Optimal Design--------------46   4.3 Criterion-Robust Optimal Design----------------47     4.3.1 Efficiency of Mr-Optimal Design--------------47     4.3.2 Minimum Mr-Efficiency of Mr'-Optimal Design--48   4.4 Comparison with Some Special Designs-----------53   4.5 Concluding Remarks-----------------------------59 5 Multivariate Polynomial Regression Models--------60   5.1 Introduction-----------------------------------60   5.2 Construction of Mr-Optimal Product Design------64   5.3 Criterion-Robust Optimal Product Design--------66     5.3.1 Efficiency of Mr-Optimal Product Design------66     5.3.2 Minimum Mr-Efficiency of Mr'-Optimal Product Design-------67   5.4 Comparison with Some Special Designs-----------74   5.5 Concluding Remarks-----------------------------79 6 Fourier Regression Models------------------------81   6.1 Introduction-----------------------------------81   6.2 Projection Design and Optimality Criteria for Fourier Regression Models-----84   6.3 Construction of Mr-Optimal Design--------------86   6.4 Criterion-Robust Optimal Design----------------91     6.4.1 Efficiency of Mr-Optimal Design--------------91     6.4.2 Minimum Mr-Efficiency of Mr'-Optimal Design--92   6.5 Comparison with Some Special Designs-----------96   6.6 Concluding Remarks----------------------------100 7 Conclusions-------------------------------------101 Bibliography--------------------------------------103

    1.Atkinson, A. C. (1972).
     Planning experiments to detect inadequate regression models.
     Biometrika 59, 275-293.

    2.Atkinson, A. C. and Cox, D. R. (1974).
     Planning experiments for discriminating between models (with discussion).
     J. Roy. Statist. Soc. Ser. B 36, 321-348.

    3.Atkinson, A. C. and Fedorov, V. V. (1975a).
     The design of experiments for discriminating between two rival models.
     Biometrika 62, 57-70.

    4.Atkinson, A. C. and Fedorov, V. V. (1975b).
     Optimal design: experiments for discriminating between several models.
     Biometrika 62, 289-303.

    5.Borth, D. M. (1975).
     A total entropy criterion for the dual problem of model discrimination and
     parameter estimation.
     J. Roy. Statist. Soc. Ser. B 37, 77-87.

    6.Box, G. E. P. and Hill, W. J. (1967).
     Discrimination among mechanistic models.
     Technometrics 9, 57-71.

    7.Cartwright, M. (1990).
     Fourier Methods for Mathematicians, Scientists and Engineers.
     Ellis Horwood, New York.

    8.Cook, R. D. and Nachtsheim, C. J. (1982).
     Model robust, linear-optimal designs.
     Technometrics 24, 49-54.

    9.Dette, H. (1990).
     A generalization of D- and D1-optimal designs in polynomial regression.
     Ann. Statist. 18, 1784-1804.

    10.Dette, H. (1991).
     A note on robust designs for polynomial regression.
     J. Statist. Plann. Inf. 28, 223-232.

    11.Dette, H. (1993).
     On a mixture of the D- and D1-optimality criterion in polynomial
     regression.
     J. Statist. Plann. Inf. 35, 233-249.

    12.Dette, H. (1994a).
     Discrimination designs for polynomial regression on compact intervals.
     Ann. Statist. 22, 890-903.

    13.Dette, H. (1994b).
     Robust designs for multivariate polynomial regression on the d-cube.
     J. Statist. Plann. Inf. 38, 105-124.

    14.Dette, H. (1995).
     Optimal designs for identifying the degree of a polynomial regression.
     Ann. Statist. 23, 1248-1266.

    15.Dette, H. and Franke, T. (2000).
     Constrained D- and D1-optimal designs for polynomial regression.
     Ann. Statist. 28, 1702-1727.

    16.Dette, H. and Franke, T. (2001).
     Robust designs for polynomial regression by maximizing a minimum of D- and
     D1-efficiencies.
     Ann. Statist. 29, 1024-1049.

    17.Dette, H. and Haller, G. (1998).
     Optimal designs for the identification of the order of a Fourier regression.
     Ann. statist. 26, 1496-1521.

    18.Dette, H. and Roder, I. (1996).
     Optimal product designs for multivariate regression with missing terms.
     Scand. J. Statist. 23, 195-208.

    19.Dette, H. and Roder, I. (1997).
     Optimal discrimination designs for multifactor experiments.
     Ann. Statist. 25, 1161-1175.

    20.Dette, H. and Studden, W. J. (1997).
     The Theory of Canonical Moments with Applications in Statistics, Probability,
     and Analysis.
     Wiley, New York.

    21.Farrell, R. H., Kiefer, J. C. and Walbran, A. (1967).
     Optimum multivariate designs.
     Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1, 113-138.
     Univ. California Press, Berkeley, CA.

    22.Gaffke, N. and Heiligers, B. (1995).
     Computing optimal approximate invariant designs for cubic regression on
     multidimensional balls and cubes.
     J. Statist. Plann. Inf. 47, 347-376.

    23.Guest, P. G. (1958).
     The spacing of observations in polynomial regression.
     Ann. Math. Statist. 29, 294-299.

    24.Hill, P. D. H. (1978a).
     A review of experimental design procedures for regression model
     discrimination.
     Technometrics 20, 15-24.

    25.Hill, P. D. H. (1978b).
     A note on the equivalence of D-optimal design measures for three rival
     linear models.
     Biometrika 65, 666-667.

    26.Hill, W. J., Hunter, W. G. and Wichern, D. W. (1968).
     A joint design criterion for the dual problem of model discrimination and
     parameter estimation.
     Technometrics 10, 145-160.

    27.Hoel, P. G. (1958).
     Efficiency problems in polynomial estimation.
     Ann. Math. Statist. 29, 1134-1145.

    28.Hoel, P. G. (1965).
     Minimax designs in two-dimensional regression.
     Ann. Math. Statist. 36, 1097-1106.

    29.Huber, P. J. (1975).
     Robustness and designs.
     In: A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.)
     287-301. North Holland, Amsterdam.

    30.Hunter, W. G. and Reiner, A. M. (1965).
     Designs for discriminating between two rival models.
     Technometrics 7, 307-323.

    31.Karlin, S. and Studden, W. J. (1966).
     Tchebycheff Systems: With Applications in Analysis and Statistics.
     Interscience, New York.

    32.Kiefer, J. C. (1959).
     Optimum experimental designs (with discussion).
     J. Roy. Statist. Soc. Ser. B 21, 272-319.

    33.Kiefer, J. C. (1961).
     Optimum designs in regression problems, II.
     Ann. Math. Statist. 32, 298-325.

    34.Kiefer, J. C. (1971).
     On the role of symmetry and approximation in exact design optimality.
     In: Statistical Decision Theory and Related Topics (S. S. Gupta and
     J. Yackel, eds.) 109-118. Academic Press, New York.

    35.Kiefer, J. C. (1974).
     General equivalence theory for optimum designs (approximate theory).
     Ann. Statist. 2, 849-879.

    36.Kiefer, J. C. and Wolfowitz, J. (1959).
     Optimum designs in regression problems.
     Ann. Math. Statist. 30, 271-294.

    37.Kiefer, J. C. and Wolfowitz, J. (1960).
     The equivalence of two extremum problems.
     Canad. J. Math. 12, 363-366.

    38.Kono, K. (1962).
     Optimal designs for quadratic regression on the k-cube.
     Mem. Fac. Sci. Kyushu Univ. Ser. A 16, 114-122.

    39.Lau, T. S. (1983).
     Theory of canonical moments and its application in polynomial regression,
     I and II. Technical Reports 83-23 and 83-24, Department of Statistics,
     Purdue University, Lafayette, IN.

    40.Lau, T. S. (1988).
     D-optimal designs on the unit q-ball.
     J. Statist. Plann. Inf. 19, 299-315.

    41.Lau, T. S. and Studden, W. J. (1985).
     Optimal designs for trigonometric and polynomial regression using canonical
     moments.
     Ann. Statist. 13, 383-394.

    42.Lauter, E. (1974).
    Experimental design in a class of models.
    Math. Oper. Statist. 5, 379-398.
    43.Lauter, E. (1976).
    Optimal multipurpose designs for regression models.
    Math. Oper. Statist. 7, 51-68.
    44.Lee, C. M. S. (1988a).
    Constrained optimal designs.
    J. Statist. Plann. Inf. 18, 377-389.
    45.Lee, C. M. S. (1988b).
    D-optimal designs for polynomial regression when the lower degree parameters
    are more important.
    Utilitas Math. 34, 53-63.
    46.Lim, Y. B. and Studden, W. J. (1988).
    Efficient Ds-optimal designs for multivariate polynomial regression on the
    q-cube.
    Ann. Statist. 16, 1225-1240.
    47.Mardia, K. (1972).
    The Statistics of Directional Data}.
    Academic Press, New York.
    48.Montepiedra, G. and Yeh, A. B. (1998).
    Two-stage designs for model discrimination and parameter estimation.
    In: MODA 5-advances in model-oriented data analysis and experimental design
    (Marseilles, 1998), 195-203, Contrib. Statist., Physica, Heidelberg.
    49.Murty, V. N. and Studden, W. J. (1972).
    Optimal designs for estimating the slope of a polynomial regression.
    J. Amer. Statist. Assoc. 67, 869-873.
    50.O'Brien, T. E. and Rawlings J. O. (1996).
    A nonsequential design procedure for parameter estimation and model
    discrimination in nonlinear regression models.
    J. Statist. Plann. Inf. 55, 77-93.
    51.Ponce De Leon, A. C. and Atkinson, A. C. (1991).
    Optimal experimental design for discrimination between two rival models in
    the presence of prior information.
    Biometrika 78, 601-608.
    52.Pukelsheim, F. (1993).
    Optimal Design of Experiments.
    Wiley, New York.
    53.Pukelsheim, F. and Rosenberger, J. L. (1993).
    Experimental designs for model discrimination.
    J. Amer. Statist. Assoc. 88, 642-649.
    54.Rafajlowicz, E. and Myszka, W. (1988).
    Optimum experimental design for a regression on a hypercube-a generalization
    of Hoel's result.
    Ann. Inst. Statist. Math. 40, 821-828.
    55.Rafajlowicz, E. and Myszka, W. (1992).
    When product type optimal design is optimal? Brief survey and new results.
    Metrika 39, 321-333.
    56.Rao, C. R. and Toutenburg, H. (1995).
    Linear Models: Least Squares and Alternatives.
    Springer-Verlag, New York.
    57.Skibinsky, M. (1967).
    The range of the (n+1)-th moment for distributions on [0,1].
    J. Appl. Probab. 4, 543-552.
    58.Skibinsky, M. (1968).
    Extreme n-th moments for distributions on [0,1] and the inverse of a moment
    space map.
    J. Appl. Probab. 5, 693-701.
    59.Skibinsky, M. (1969).
    Some striking properties of binomial and beta moments.
    Ann. Math. Statist. 40, 1753-1764.
    60.Skibinsky, M. (1986).
    Principal representations and canonical moment sequences for distributions on
    an interval.
    J. Math. Anal. Appl. 120, 95-118.
    61.Spezzaferri, F. (1987).
    Nonsequential designs for model discrimination and parameter estimation.
    In: Bayesian Statistics 3, (Valencia, 1987), 777-783, Oxford Sci. Publ.,
    Oxford Univ. Press, New York.
    62.Spruill, M. C. (1990).
    Good designs for testing the degree of a polynomial mean.
    Sankhya Ser. B 52, 67-74.
    63.Stigler, S. M. (1971).
    Optimal experimental design for polynomial regression.
    J. Amer. Statist. Assoc. 66, 311-318.
    64.Studden, W. J. (1980).
    Ds-optimal designs for polynomial regression using continued fractions.
    Ann. Statist. 8, 1132-1141.
    65.Studden, W. J. (1982a).
    Some robust-type D-optimal designs in polynomial regression.
    J. Amer. Statist. Assoc. 77, 916-921.
    66.Studden, W. J. (1982b).
    Optimal designs for weighted polynomial regression using canonical moments.
    In: Statistical Decision Theory and Related Topics III 2, (S. S. Gupta and
    J. O. Berger, eds.) 335-350. Academic Press, New York.
    67.Studden, W. J. (1989).
    Note on some Phi_{p}-optimal designs for polynomial regression.
    Ann. Statist. 17, 618-623.
    68.Wong, W. K. (1994).
    G-optimal designs for multi-factor experiments with heteroscedastic errors.
    J. Statist. Plann. Inf. 40, 127-133.

    下載圖示 校內:立即公開
    校外:2003-05-21公開
    QR CODE