簡易檢索 / 詳目顯示

研究生: 鍾易達
Chung, Yi-Da
論文名稱: 應用於太陽能集熱器之自然落塵對效率影響之研究與歸仁地區戶外實測之結果分析
A Field Test of Dust Sedimentation on Solar Collectors At Guiren
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 52
中文關鍵詞: 累積落塵量穿透率下降量戶外實測太陽輻射能
外文關鍵詞: Dust Deposition Weight, Gradual Reduction in Transmittance, Outdoor Test, Solar Radiation
相關次數: 點閱:152下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在太陽能裝置上,自然落塵於玻璃表面的堆積會造成穿透率持續的隨時間而降低且這個議題經常被忽視。目前,台灣仍很難找到有長期的實測報告可以說明自然落塵對於太陽能集熱器的影響。本研究從2014年10月到2016年4月,於成功大學的位於歸仁區的實驗場設置了戶外實測的裝置,並架設一組沒有任何塗層的高透光性玻璃與一組由國內的慈峰玻璃所提供的二氧化鈦塗層之光觸媒玻璃來進行實驗。實驗中所測試的傾斜角度為0度和23度,方位角皆為0度(朝正南)。在玻璃表面的自然落塵之重量(W_D)與穿透率(∆τ)分別固定每雙周和一個月進行一次量測持續紀錄其變化。本研究中,歸仁地區自然落塵的每月累積重量範圍從0.027到1.485 公克每立方公尺,重量變化隨傾斜角與季節性密切相關。在乾季少雨期間,穿透率下降量在水平玻璃板上可以達19.9%。另外,在本研究中觀察到該地區的落塵成分以二氧化矽和硫酸鈣為主,且在高濕度的環境下容易形成一層無機鹽類堆積的落塵,而在此情況下本實驗使用的光觸媒玻璃並未顯示出顯著的清潔效果。將長期的實測資料進行回歸分析作出一線性的預估趨勢:∆τ=9.845W_D+2.609,其相關係數為R^2=0.868,顯示以此方程式預估該地區的落塵之影響具有一定程度的可信度。

    Soiling on the cover glass of solar collector is a commonly overlooked issue. Very few available long-term information in Taiwan has been reported so far. A field test on the dust sedimentation on the glass sample plates in the Guiren Campus of National Cheng Kung University was conducted from October, 2014 to April, 2016 in this study. A set of glass plates consists of one made of common glass while the other of the common glass with hydrophilic coating (TiO2). Two sets of glass plates were installed toward the south direction (i.e. 0° azimuth angle) with two tilted angles ( β), including β = 0° (horizontal) and β = 23° (around the latitude of the installed site). The weight of the dust sedimentation (W_D) on the glass surface and the normal transmittance (∆τ) of the glass plate were constantly measured and recorded for each sample on the two-week and monthly basis, respectively. In the study, dust deposition rates ranging 0.027 to 1.485 g/m2/month were observed and varied with time of year and inclined angles. In dry season, reduction in transmittances up to 19.9 % were found for horizontally uncoated glass. The dust deposition rate is significantly affected by inclined angles and rainfall amount. It is found that the surface modification of TiO2 coating seems ineffective to remove the moisture-mud mainly composed of SiO2 and CaSO4. The relationship between dust deposition rate and transmittance reduction was found by a regression analysis with a linear function of: ∆τ=9.845W_D+2.609 , with R^2 of 0.868 which indicates the linear fitting to the data is sufficiently accurate.

    摘要…………………………………………………………….…...................I ABSTRACT…………………………………………………………….…...II ACKNOWLEDGEMENTS……………..…………………………………III TABLE OF CONTENTS…………………..……………….……………...IV LIST OF TABLES………………………...………………………….…....VII LIST OF FIGURES………………………………………………………VIII NOMENCLATURE………………………………………………………..XI CHAPTER 1: INTRODUCTION…………………………………………..1 1.1 Background and Motivation………………………………………….1 1.2 Objective……………………………………………………………...6 CHAPTER 2: EXPERIMENTAL SET-UP AND METHODS……………7 2.1 Experimental Facilities……………………………………………….7 2.1.1 Glass Samples………………………………………………….7 2.1.2 Installed Frames for Outdoor test……………………………...7 2.1.3 Collectors for Dustfall in Atmosphere…………………………8 2.1.4 Laboratory Oven……………………………………………….8 2.1.5 Evaporation Apparatus…………………………………………8 2.2 Measuring Instruments……………………………………………….9 2.2.1 Micro-balance………………………………………………….9 2.2.2 Pyranometer……………………………………………………9 2.2.3 Spectrometer………………………………………………….10 2.2.4 Anemometer and Rain Gauge………………………………...10 2.2.5 Contact Angle Meter…………………………………………10 2.3 Experimental Methods………………………………………………11 2.3.1 Problem Description………………………………………….11 2.3.2 Environmental and Experimental Factors……………………12 2.3.3 Field Test Installation…………………………………………12 2.3.4 Dust Properties………………………………………………..13 2.3.5 Glass Properties………………………………………………13 2.3.6 Determination of Dustfall in Atmosphere…………………….14 2.3.7 Transmittance Measurement and Correlation………………...14 2.3.8 Dust Weight Measurement……………………………………16 2.3.9 Linear Regression Analysis………………..…………………16 CHAPTER 3: RESULTS AND DISCUSSION…………………………...20 3.1 Analysis of Glass Samples and Collected Dust……………………..20 3.1.1 Spectral Analysis of Cleaned Glass Samples…………………20 3.1.2 Contact Angles of Glass Samples…………………………….21 3.1.3 Collected Dust in Atmosphere………………………………..21 3.1.4 Analysis of Collected Dust…..……………………………….21 3.2 Results of Long-term Experiment…………………………………..22 3.2.1 Precipitation…….…………………………………………….22 3.2.2 Relationship between Dust Weight and Reduction in Transmittance………………………………………………...22 3.2.3 Regression Analysis………………………………………….23 CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK…………………………………………………………...25 4.1 Conclusion…………………………………………………………..25 4.2 Recommendations for Future Work………………………………..26 REFERENCES……………………………………………………………28 TABLES……………………………………………………………………30 FIGURES…………………………………………………………………..32

    [1] Saver, T., Al-Qaraghuli, A. and Kazmerski, L. L., “ A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches”, Renewable and Sustainable Energy Reviews, Vol. 22, pp. 698-733, 2013.
    [2] Ghazi, S., Sayigh, A. and Ip, K., “Dust effect on flat surfaces – A review paper”, Renewable and Sustainable Energy Reviews, Vol. 33, pp. 742-751, 2014.
    [3] Kazem, A. A., Chaichan, M. T. and Kazem, H. A., “Dust effect on photovoltaic utilization in Iraq: Review article”, Renewable and Sustainable Energy Reviews, Vol. 37, pp.734-749, 2014.
    [4] Hottel, H. C., Woertz, B. B. “The performance of flat plate solar heat collectors”, ASME Transactions, Vol. 64, pp. 91-104, 1942.
    [5] Dietz, A. Zarem, A., Erway, D., “Introduction to the utilization of solar energy”, New York: McGraw-Hill; pp. 59-86, 1963.
    [6] Nahar, N. M., Gupta, J. P., “Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India”, Solar & Wind Technology, Vol.7, pp. 237-243, 1990.
    [7] Garg, H. P., “Effect of dirt on transparent covers in flat-plate solar energy collector”, Solar Energy, Vol. 15, pp. 299-302, 1974.
    [8] Sayigh, A., Al-Jandal, S., Ahmed, H., “Dust effect on solar flat surfaces devices in Kuwait, In:Proceedings of the workshop on the physics of non-conventional energy sources and materials science for energy, pp. 2-20, 1985.
    [9] El-Nashar, A. M., “Effect of dust accumulation on the performance of evacuated tube collectors”, Solar Energy, Vol. 53, pp. 105-115. 1994.
    [10] El-Shobokshy, M. S., Hussein, F. M. “Degradation of photovoltaic cell performance due to dust deposition on its surface”, Renewable Energy Vol. 3 pp. 585-590, 1993.
    [11] Hassan, A. H., Rohoma, U. A., Elminir, H. K., and Fathy, A. M. “Effect of Airborne dust concentration on the performance of PV modules”, Journal of Astronomical Society Egypt, Vol. 13(1), pp. 24-38, 2005.
    [12] Hegazy, A. A., “Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors”, Renewable Energy, Vol. 22, pp. 525-540, 2011.
    [13] Boyle, L., Flinchpaugh, H., Hannigan, M. P., “Natural soiling of photovoltaic cover plates and the impact of transmission”, Renewable Energy, Vol. 77, pp. 166-173, 2015.
    [14] Roth, E. P., and Anaya, A. J. “The effect of natural soiling and cleaning on the size distribution of particles deposited on glass mirrors”, Journal of Solar Energy Engineering, Vol. 102, pp. 248-256, 1980.
    [15] Cuddihy, E. F., “Theoretical considerations of soil retention”, Solar Energy Materials, Vol. 3, pp. 21-33, 1980.
    [16] 唐麗英、王春和,“SPSS 統計分析”儒林圖書公司, 2008.
    [17] Montgomery, D. C., and Runger, G. C., “Applied statistics and probability for engineers, 5th Edition”, Wiley, 2011.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE