簡易檢索 / 詳目顯示

研究生: 楊振
Yang, Jhen
論文名稱: 開發馬來醯亞胺修飾電極用於尿液白蛋白之阻抗式感測
Development of maleimide-modified biosensor for the impedimetric detection of albumin in urine
指導教授: 許梅娟
Syu, Mei-Jwyan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 68
中文關鍵詞: 生物感測器尿液白蛋白馬來醯亞胺電化學阻抗頻譜
外文關鍵詞: biosensor, urine albumin, maleimides, impedimetric detection
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract II Acknowledgement III Contents IV List of Figures VII List of Tables XI Chapter 1. Introduction 1 1.1 Preface 1 1.2 Microalbuminuria 1 1.3 Motivation and Purpose 2 Chapter 2. Literature Review 3 2.1 Albumin 3 2.1.1 Human Serum Albumin (HSA) 3 2.1.2 Clinical Evaluation 3 2.1.3 Hydrophobic Cavity 4 2.1.4 Post-translational Modification of Cys 5 2.2 Biosensors 7 2.2.1 Introduction 7 2.2.2 Recognition Elements (Bioreceptor) 7 2.2.3 Immobilization Techniques 10 2.3 Albumin Sensing Platform 12 2.3.1 Introduction 12 2.3.2 Dye-Binding Methods 12 2.3.3 Fluorescent Sensing Techniques 13 2.3.4 Electrochemical Biosensors 13 Chapter 3. Materials and Methods 16 3.1 Fabrication of Working Electrodes 16 3.1.1 Gold Electrode 16 3.1.2 Zinc protoporphyrin (ZnPP)/Cysteine (Cys) Modified Electrode 16 3.1.3 Maleimides/Cys Modified Electrode 16 3.1.4 Maleimides/2-aminoethanethiol (MEA) Modified Electrode 17 3.1.5 Three-Electrode System 17 3.2 Optimization of 11-MA/Cys Modified Electrode 17 3.2.1 Cys Concentration 17 3.2.2 11-MA Concentration 17 3.2.3 NHS/EDC Molar Ratio 18 3.2.4 Rinse Time 18 3.2.5 Cys Reaction Time 18 3.2.6 11-MA/EDC/NHS Reaction Time 18 3.3 Electrochemical Behavior Analysis 18 3.3.1 CV (Cyclic Voltammetry) 18 3.3.2 Nyquist Plot 18 3.4 Material Characteristics Analysis 19 3.4.1 UV-Vis Spectroscopy 19 3.4.2 FTIR (Fourier-Transform Infrared Spectroscopy) 19 3.4.3 Raman Spectroscopy 19 3.4.4 XPS (X-ray Photoelectron Spectroscopy) 19 3.4.5 SEM (Scanning Electron Microscope) 20 3.5 Clinical Examination 20 3.5.1 Selectivity 20 3.5.2 Reproducibility 20 3.5.3 Stability 20 3.5.4 Clinical Sample Test 20 3.6 Chemicals 21 3.7 Apparatus 22 Chapter 4. Results and Discussion 23 4.1 Biorecognition Materials: Fabrication & Comparison 23 4.1.1 ZnPP/Cys 23 4.1.2 Maleimides/Cys 24 4.1.3 Maleimides/MEA 25 4.1.4 Closure 26 4.2 Reactivity: 11-MA & Albumin 27 4.2.1 Absorbance Variation by UV-Vis Spectrophotometer 27 4.2.2 Structure Analysis by FTIR 30 4.3 Surface Characterization 32 4.3.1 Electrode Characterization by Raman Spectroscopy 32 4.3.2 Surface Element Analysis by XPS 34 4.3.3 Surface Morphology of the Electrodes by SEM 36 4.4 Electrochemical Behavior 36 4.4.1 Modification Characteristics 36 4.4.2 Adsorption of Albumin 39 4.5 Optimization of Instrumental Conditions 40 4.5.1 Frequency 40 4.5.2 Stirring Rate 42 4.5.3 Optimization of pH 44 4.5.4 Calibration Time 45 4.6 Optimization of Electrode Fabrication 46 4.6.1 Concentration 46 4.6.2 Rinse Time 48 4.6.3 Reaction Time 49 4.7 Quantification of Albumin 51 4.7.1 Charge Transfer Resistance 51 4.7.2 Impedimetric Parameters 52 4.7.3 Injection Methods 53 4.8 Clinical Examination 54 4.8.1 Selectivity 54 4.8.2 Reproducibility 56 4.8.3 Stability 57 4.8.4 Standard Urine Calibration 58 4.8.5 Clinical Sample Test 59 4.9 Comparison with the Previous Literature 61 Chapter 5. Conclusions 63 References 64

    1. American Diabetes Association. Position statement: diabetic nephropathy. Diabetes Care 26, S94–S98, 2003.
    2. KA Howard. Albumin: the next-generation delivery technology. Therapeutic Delivery 6, 265–268, 2015.
    3. J Anguizola, R Matsuda, OS Barnaby, KS Hoy, C Wa, E Debolt, M Koke, DS Hage. Review: glycation of human serum albumin. Clinica Chimica Acta 425, 64–76, 2013.
    4. V Arroyo, R Garcia-Martinez, X Salvatella. Human serum albumin, systemic inflammation, and cirrhosis. Journal of Hepatology 61, 396–407, 2014.
    5. J Lutale, H Thordarson, ZG Abbas, K Vetvik. Microalbuminuria among type 1 and type 2 diabetic patients of African origin in Dar Es Salaam, Tanzania. BMC Nephrology 8, 2, 2007.
    6. DE Busby, GL Bakris. Comparison of commonly used assays for the detection of microalbuminuria. Journal of Clinical Hypertension 6, 8–12, 2004.
    7. DS Fredrickson, RS Gordon, K Ono, A Cherkes. The metabolism of albumin-bound C14-labeled unesterified fatty acids in normal human subjects. Journal of Clinical Investigation 37, 1504–1515, 1958.
    8. G Sudlow, DJ Birkett, DN Wade. The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology 11, 824–832,1975.
    9. AA Bhattacharya, T Grüne, S Curry. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology 303, 721–732, 2000.
    10. O Boutureira, GJL Bernardes. Advances in chemical protein modification. Chemical Reviews 115, 2174–2195, 2015.
    11. SB Gunnoo, A Madder. Chemical protein modification through cysteine. Chembiochem 17, 529–553, 2016.
    12. PI Clark, G Lowe. Conversion of the active-site cysteine residue of papain into a dehydro-serine, a serine and a glycine residue. European Journal of Biochemistry 84, 293–299, 1978.
    13. HP Hemantha, SN Bavikar, Y Herman-Bachinsky, N Haj-Yahya, S Bondalapati, A Ciechanover, A Brik. Nonenzymatic polyubiquitination of expressed proteins. Journal of the American Chemical Society 136, 2665–2673, 2014.
    14. J Ravasco, H Faustino, A Trindade, P Gois. Bioconjugation with maleimides: a useful tool for chemical biology. Chemistry-A European Journal 25, 4359, 2019.
    15. R Kundu, ZT Ball, Rhodium-catalyzed cysteine modification with diazo reagents. Chemical Communications 49, 4166–4168, 2013.
    16. A Chan, J Tsai, V Lo, GL Li, MK Wong, CM Che. Gold-mediated selective cysteine modification of peptides using allenes. Chemical Communications 49, 1428–1430, 2013.
    17. M Smith, M Caspersen, E Robinson, M Morais, A Maruani, JPM Nunes, K Nicholls, MJ Saxton, S Caddick, JR Baker, V Chudasama. A platform for efficient, thiol-stable conjugation to albumin's native single accessible cysteine. Organic & Biomolecular Chemistry 13, 7946–7949, 2015.
    18. AD Baldwin, KL Kiick. Tunable degradation of maleimide–thiol adducts in reducing nvironments. Bioconjugate Chemistry 22, 1946–1953, 2011.
    19. A Wall, AG Wills, N Forte, C Bahou, L Bonin, K Nicholls, MT Ma, V Chudasama, JR Baker. One-pot thiol–amine bioconjugation to maleimides: simultaneous stabilisation and dual functionalisation. Chemical Science 11, 11455–11460, 2020.
    20. BH Northrop, SH Frayne, U Choudhary. Thiol-maleimide "click" chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity. Polymer Chemistry 6, 3415–3430, 2015.
    21. JS Wilson. Sensor Technology Handbook. 2005.
    22. D Grieshaber, R MacKenzie, J Voros, E Reimhult. Electrochemical biosensors—sensor principles and architectures, Sensors 8, 1400–1458, 2008.
    23. M Ho, G Rechnitz. Highly stable biosensor using an artificial enzyme. Analytical Chemistry 59, 536–537, 1987.
    24. D Chan, MM Barsan, Y Korpan, CMAL Brett. Lactate selective impedimetric bienzymatic biosensorbased on lactate dehydrogenase and pyruvate oxidase. Electrochimica Acta 231, 209–215, 2017.
    25. G Seo, G Lee, MJ Kim, SH Baek, M Choi, KB Ku, CS Lee, S Jun, D Park, HG Kim, SJ Kim, JO Lee, BT Kim, EC Park, SI Kim. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14, 5135–5142, 2020.
    26. KM Song, S Lee, C Ban. Aptamers and their biological applications. Sensors 12, 612–631, 2012.
    27. Q Zhu, F Gao, Y Yang, B Zhang, W Wang, Z Hu, Q Wang. Electrochemical preparation of polyaniline capped Bi2S3 nanocomposite and its application in impedimetric DNA biosensor. Sensors and Actuators B: Chemical 207, 819–826, 2015.
    28. Y Wang, J Feng, Z Tan, H Wang. Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers. Biosensors and Bioelectronics 60, 218–223, 2014.
    29. T Guinovart, DH Alonso, L Adriaenssens, P Blondeau, FX Rius, P Ballester, FJ Andrade. Characterization of a new ionophore-based ion-selective electrode for the potentiometric determination of creatinine in urine. Biosensors and Bioelectronics 87, 587–592, 2017.
    30. L Han, P Liu, VA Petrenko, A Liu. A label-free electrochemical impedance cytosensor based on specific peptide-fused phage selected from landscape phage library. Scientific Reports 6, 22199, 2016.
    31. N Aydemir, J Malmström, J Travas-Sejdic. Conducting polymer based electrochemical biosensors. Physical Chemistry Chemical Physics 18, 8264–8277, 2016.
    32. YM Chu, CC Lin, HC Chang, C Li, C Guo. TiO2 nanowire FET device: encapsulation of biomolecules by electro polymerized pyrrole propylic acid. Biosensors and Bioelectronics 26, 2334–2340, 2011.
    33. F Schreiber. Structure and growth of self-assembling monolayers. Progress in Surface Science 65, 151–257, 2000.
    34. K Tshenkeng, P Mashazi. Covalent attachment of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine onto pre-grafted gold electrode for the determination of catecholamine neurotransmitters. Electrochimica Acta 360, 137015, 2020.
    35. L Chen, X Wang, W Lu, X Wu, J Li. Molecular imprinting: perspectives and applications. Chemical Society Reviews 45, 2137–2211, 2016.
    36. D Kumar, D Banerjee. Methods of albumin estimation in clinical biochemistry: past, present, and future. Clinica Chimica Acta 469, 150–160, 2017.
    37. DA Aryan, A Ritz. Measurement of serum albumin by HABA-dye technique—a study of effect of free and conjugated bilirubin, of bile acids and of certain drugs. Clinica Chimica Acta 26, 505–516, 1969.
    38. A Sengupta, DS Hage. Characterization of minor site probes for human serum albumin by highperformance affinity chromatography. Analytical Chemistry 71, 3821–3827, 1999.
    39. MA Kessler, A Meinitzer, OS Wolfbeis. Albumin blue 580 fluorescence assay for albumin. Analytical Biochemistry 248, 180–182, 1997.
    40. BT Doumas, WA Watson, HG Biggs. Albumin standards and measurement of serum albumin with bromocresol green. Clinica Chimica Acta 31, 87–96, 1971.
    41. S Kamphuis, HJM Salden, FMJ Zuijderhoudt. Albumin Analysis in Plasma: Comparison between bromocresol green, bromocresol purple and immunoassay in adult (non) hemodialysis patients. Nederlands Tijdschrift voor de Klinische Chem 26, 9–12, 2001.
    42. K Schosinsky, M Vargas, A Luz Esquivel, M Chavarria. Simple Spectrophotometric Determination of urinary albumin by dye-binding with use of bromophenol blue. Clinical Chemistry 33, 223–226, 1987.
    43. S Sasaki, GPC Drummen, GI Konishi. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of Materials Chemistry C4, 2731–2743, 2016.
    44. SI Reja, IA Khan, V Bhalla, M Kumar. A TICT based NIR-fluorescent probe for human serum albumin: a pre-clinical diagnosis in blood serum. Chemical Communications 52, 1182–1185, 2016.
    45. T Zhu, J Du, W Cao, J Fan, X Peng. Microenvironment-sensitive fluorescent dyes for recognition of serum albumin in urine and imaging in living cells. Industrial & Engineering Chemistry Research 55, 527–533, 2016.
    46. G Dey, P Gaur, R Giri, S Ghosh. Optical signaling in biofluids: a nondenaturing photostable molecular probe for serum albumins. Chemical Communications 52, 1887–1890, 2016.
    47. C Liao, F Li, S Huang, B Zheng, J Du, D Xiao. A specific and biocompatible fluorescent sensor based on the hybrid of GFP chromophore and peptide for HSA detection. Biosensors and Bioelectronics 86, 489–495, 2016.
    48. Y Hong, C Feng, Y Yu, J Liu, JWY Lam, KQ Luo, BZ Tang. Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics. Analytical Chemistry 82, 7035–7043, 2010.
    49. J Li, J Wu, F Cui, X Zhao, Y Li, Y Lin, Y Li, J Hu, Y Ju. A dual functional fluorescent sensor for human serum albumin and chitosan. Sensors and Actuators B: Chemical 243, 831–837, 2017.
    50. KH Lubert, K Kalcher. History of electroanalytical methods. Electroanalysis 22, 1937–1946, 2010.
    51. V Stanković, S Đurđić, M Ognjanović, B Antić, K Kalcher, J Mutić, DM Stanković. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. Journal of Electroanalytical Chemistry 860, 113928, 2020.
    52. M Cieplak, K Szwabinska, M Sosnowska, BKC Chandra, P Borowicz, K Noworyta, F D’Souza, W Kutner. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosensors and Bioelectronics 74, 960–966, 2015.
    53. AJ Bard, LR Faulkner. Electrochemical methods: fundamentals and applications. 2001.
    54. J Muñoz, R Montes, M Baeza. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: characterization, architecture surface and bio-sensing. TrAC Trends in Analytical Chemistry 97, 201–215, 2017.
    55. YH Chuang, YT Chang, KL Liu, HY Chang, TR Yew. Electrical impedimetric biosensors for liver function detection. Biosensors and Bioelectronics 28, 368–372, 2011.
    56. MO Shaikh, PY Zhu, CC Wang, YC Du, CH Chuang. Electrochemical immunosensor utilizing electrodeposited Au nanocrystals and dielectrophoretically trapped PS/Ag/ab-HSA nanoprobes for detection of microalbuminuria at point of care. Biosensors and Bioelectronics 126, 572–580, 2019.
    57. AM Attar, MB Richardson, G Speciale, S Majumdar, RP Dyer, EC Sanders, RM Penner, GA Weiss. Electrochemical quantification of glycated and non-glycated human serum albumin in synthetic urine. ACS Applied Materials & Interfaces 11, 4757–4765 2019.
    58. D Caballero, E Martinez, J Bausells, A Errachid, J Samitier. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Analytica Chimica Acta 720, 43–48, 2012.
    59. AF Ogata, JM Edgar, S Majumdar, JS Briggs, SV Patterson, MX Tan, ST Kudlacek, CA Schneider, GA Weiss, RM Penner. Virus-enabled biosensor for human serum albumin. Analytical Chemistry 89, 1373–1381, 2017.
    60. R Paolesse, S Nardis, D Monti, M Stefanelli, CD Natale. Porphyrinoids for chemical sensor applications. Chemical Reviews 117, 2517–2583, 2017.
    61. N Elgindy, K Elkhodairy, A Molokhia, A Elzoghby. Biopolymeric nanoparticles for oral protein delivery: design and in vitro evaluation. Journal of Nanomedicine & Nanotechnology 2, 1000110, 2011.
    62. S Magana, A Zerroukhi, C Jegat, N Mignard. Thermally reversible crosslinked polyethylene using Diels–Alder reaction. Reactive & Functional Polymers 70, 442–448, 2010.
    63. AL Jenkins, RA Larsen, TB Williams. Characterization of amino acids using Raman spectroscopy. Spectrochimica Acta Part A 61, 1585–1594, 2005.
    64. DG Castner, K Hinds, DW Grainger. X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces. Langmuir 12, 5083–5086, 1996.
    65. Y Mikhlin, M Likhatski, Y Tomashevich, A Romanchenko, S Erenburg, S Trubina. XAS and XPS examination of the Au–S nanostructures produced via the reduction of aqueous gold(III) by sulfide ions. Journal of Electron Spectroscopy and Related Phenomena 177, 24–29, 2010.
    66. KS Siow, L Britcher, S Kumar, HJ Griesser. XPS study of sulfur and phosphorus compounds with different oxidation states. Sains Malaysiana 47(8), 1913–1922, 2018.
    67. JZ Tsai, CJ Chen, K Settu, YF Lin, CL Chen, JT Liu. Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosensors and Bioelectronics 77, 1175–1182, 2016.
    68. G Zhang, Y Yu, M Guo, B Lin, L Zhang. A sensitive determination of albumin in urine by molecularly imprinted electrochemical biosensor based on dual-signal strategy. Sensors and Actuators B: Chemical 288, 564–570, 2019.
    69. B Feyzi-Barnaji, B Darbasizadeh, E Arkan, H Salehzadeh, A Salimi, F Nili, R Dinarvand, A Mohammadi. Immunoreaction-triggered diagnostic device using reduced graphene oxide/CuO NPs/chitosan ternary nanocomposite, toward enhanced electrochemical detection of albumin. Journal of Electroanalytical Chemistry 877, 114642, 2020.

    無法下載圖示 校內:2026-07-30公開
    校外:2026-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE