簡易檢索 / 詳目顯示

研究生: 曹陽
Cao, Yang
論文名稱: 利用空間加權的灰色模型來模擬環境衰退過程
A spatial weighted grey model for simulation of environmental degradation process
指導教授: 馬瀰嘉
Ma, Mi-Chia
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 44
中文關鍵詞: 環境庫茲涅茨曲線污染港假說空間面板模型生態足跡灰色模型空間面板灰色模型
外文關鍵詞: Environmental Kuznets Curve (EKC), Pollution Haven Hypothesis, Spatial Panel Model, Ecological Footprints, Grey Model (GM),, Spatial Panel Grey Model (SPGM)
相關次數: 點閱:164下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 考慮到近些年來的全球氣候變暖問題,以及各主要國家之間有關永續發展的討論,很多學者對國民收入與當地環境污染之關聯做了很多研究,關於國民收入對環境污染的影響機制的研究也有長足發展。目前大部分的研究認爲環境污染與國民收入之間的關係服從一個倒U 型的曲線,稱作環境庫茲涅茨曲線(Environmental Kuznets Curve)。工業技術的進步與國際間的污染轉移被認作是影響這個機制的幾個主要驅動因子之二。而在傳統的面板模型(Panel Model)和時間序列模型(Time Series Model)之外,應用灰色系統理論(Grey System Theory)來預測碳排放和環境衰退的研究近年來也在逐漸增加。在此基礎上,爲驗證環境污染的轉移理論,並提高模型的精度,本文拓展了原始的灰色模型(Grey Model),使之適用於面板數據(Panel Data),以建立面板灰色模型(Panel Grey Model),並在拓展後的模型中納入空間加權矩陣(Spatial Weight Matrix),建立了一個新的一階多變量空間面板灰色模型(Spatial Panel Grey Model)來模擬環境的衰退狀況。

    鑑於工業發展對環境衰退進程的關鍵性影響,並綜合考慮各種污染物對生態環境的影響,本文採用40 個工業國家自2008 年至2018 年的人均生產總值(Gross Domestic Product),人均生態足跡(Ecological Footprint)以及各個國家的空間位置資料來建立模型。在空間權重矩陣的選擇問題上,本文比較了人均生態足跡在相鄰(Neighbourhood)空間權重矩陣和距離(Distance)空間權重矩陣上的全局莫蘭指數(Global Moran’s I),最終選擇使用相鄰空間權重矩陣建模。

    與最原始的灰色模型相比,本文所採用的一階多變量空間灰色模型拓展了灰色模型的用途,使其不僅可以應用于單個的時間序列,也可應用于面板數據,此外本模型還將空間信息納入考量,進一步提高了模型的精度。

    建模結果顯示,本文採納的空間面板灰色模型與面板灰色模型相比較,普通的面板模型以及空間面板模型在模型精度上均有提高。模型模擬結果顯示,某國家或者地區的人均生態足跡受到鄰近國家或地區的人均生態足跡的正向影響。這一結果也與全局莫蘭指數所反映的結果一致。若僅以空間灰色模型的結果來看,各地人均生態足跡受到經濟的影響較不顯著。

    There has been considerable development in the study of the mechanism of national income effects on environmental pollution. The majority of current research suggests that the relationship between environmental pollution and national income follows an inverted U-shaped curve, which is named after Kuznets as the Environmental Kuznets Curve (EKC). Advancements in industrial technology and international pollution transfer are considered to be two of the main drivers of this mechanism. Except for panel models and time series models, the application of grey system theory to simulate carbon emissions or environmental degradation has been more and more popular. On this basis, to verify the hypothesis of pollution transferring and improve the accuracy of the existing models, this research extended the original Grey Model (GM(1,P)), making it available for panel data to build a panel grey model (PGM(1,P)). In order to take international pollution transferring into consideration, this research involved a spatial weight matrix in PGM(1,P), having created a new spatial panel grey model (SPGM(1,P)) to simulate the degradation of the environment.

    This research works on a data set of 40 industrial countries from 2008 to 2018. The independent variable is Gross Domestic Product (GDP) per capita, and the dependent variable is Ecological Footprint (EF) per capita. After a comparison of the neighbourhoodbased spatial weight matrix and distance-based spatial weight matrix, this research found the neighbourhood-based one more suitable by the Global Moran’s I, and a significant positive spatial correlation is observed in this data set.

    Compared to other grey models, SPGM(1,P) extended the usage of the grey model, making it available for panel data instead of simply individual time series. Furthermore, it involved a spatial matrix in the model and improved accuracy as well.

    The calculation results show that SPGM(1,P) is more accurate than the other three models. It can also prove that spatial transferring of pollution among neighbourhoods really exists. The local region’s pollution level is positively affected by neighbours, which is the same as the conclusion drawn by the Global Moran’ Is. On the result of SPGM(1,P) only, the effect of economic growth on environmental degradation is not significant.

    摘要i Abstract ii Acknowledgements iii Table of Contents iv List of Tables vi List of Figures vii Nomenclature viii Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1. Researches of EKC 4 2.2. Grey model 5 Sequence generation of grey model 5 Mechanism of GM(1,1) 6 Estimation of parameters for GM(1,1) 7 Mechanism of GM(1,P) 7 Estimation of parameters for GM(1,P) 8 2.3. Panel model 9 Chapter 3. Methodology 13 3.1. Vector sequence generation 13 3.2. Panel grey model 15 Estimation of coefficients of PGM(1,P) 16 3.3. Moran’s I 17 3.4. Spatial panel grey model 18 Estimation of coefficients of SPGM(1,P) 18 Chapter 4. Simulation and Real Example 20 4.1. Simulation 20 4.2. Real example 22 Spatial correlation test 23 Model results 29 Residual analysis 33 Chapter 5. Conclusion and Discussion 35 References 36 Appendix 39 5.1. Matrix form of PGM(1,P) estimation equation 39 5.2. Matrix form of SPGM(1,P) estimation equation 40 5.3. Estimation of expansion coefficients and intercepts 41

    Akpan, U. F., & Chuku, A. (2011, April). Economic Growth and Environmental Degradation in Nigeria: Beyond the Environmental Kuznets Curve (MPRA Paper No.31241).University Library of Munich, Germany. Retrieved from https://ideas.repec.org/p/pra/mprapa/31241.html

    Al-mulali, U., Weng-Wai, C., Sheau-Ting, L., & Mohammed, A. H. (2015). Investigating the environmental kuznets curve (ekc) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecological Indicators, 48, 315-323. Retrieved from https://www.sciencedirect.com/science/article/pii/S1470160X14003951 doi: https://doi.org/10.1016/j.ecolind.2014.08.029

    Azam, M., & Khan, A. Q. (2016). Testing the environmental kuznets curve hypothesis: A comparative empirical study for low, lower middle, upper middle and high income countries. Renewable and Sustainable Energy Reviews, 63, 556-567. Retrieved from https://www.sciencedirect.com/science/article/pii/S1364032116301642 doi: https://doi.org/10.1016/j.rser.2016.05.052

    Borucke, M., Moore, D., Cranston, G., Gracey, K., Iha, K., Larson, J., … Galli, A. (2013).Accounting for demand and supply of the biosphere’s regenerative capacity: The national footprint accounts'underlying methodology and framework. Ecological Indicators, 24,518-533. Retrieved from https://www.sciencedirect.com/science/article/pii/S1470160X12002968 doi: https://doi.org/10.1016/j.ecolind.2012.08.005

    Cao, Y., Yin, K., Li, X., & Zhai, C. (2021). Forecasting co2 emissions from Chinese marine fleets using multivariable trend interaction grey model. Applied Soft Computing, 104,107220. Retrieved from https://www.sciencedirect.com/science/article/pii/S1568494621001435 doi: https://doi.org/10.1016/j.asoc.2021.107220

    Cole, M. A. (2004, 1). Trade, the pollution haven hypothesis and the environmental kuznets curve: examining the linkages. Ecological Economics, 48, 71-81. doi: 10.1016/J.ECOLECON.2003.09.007

    Dinda, S., Coondoo, D., & Pal, M. (2000, 9). Air quality and economic growth: an empirical study. Ecological Economics, 34, 409-423. doi: 10.1016/S0921-8009(00)00179-8

    Ding, S., Xu, N., Ye, J., Zhou, W., & Zhang, X. (2020). Estimating chinese energy-related co2emissions by employing a novel discrete grey prediction model. Journal of Cleaner Production,259, 120793. Retrieved from https://www.sciencedirect.com/science/article/pii/S0959652620308404 doi: https://doi.org/10.1016/j.jclepro.2020.120793

    Espoir, D. K., & Sunge, R. (2021, 12). Co2 emissions and economic development in africa: Evidence from a dynamic spatial panel model. Journal of Environmental Management,300, 113617. doi: 10.1016/J.JENVMAN.2021.113617

    Fodha, M., & Zaghdoud, O. (2010, 2). Economic growth and pollutant emissions in tunisia: An empirical analysis of the environmental kuznets curve. Energy Policy, 38, 1150-1156.doi: 10.1016/J.ENPOL.2009.11.002

    Gao, M., Yang, H., Xiao, Q., & Goh, M. (2022). A novel method for carbon emission forecasting based on gompertz’s law and fractional grey model: Evidence from American industrial sector. Renewable Energy, 181, 803-819. Retrieved from https://www.sciencedirect.com/science/article/pii/S0960148121013896 doi: https://doi.org/10.1016/j.renene.2021.09.072

    Global Footprint Network. (2022). Global footprint network – homepage. Retrieved fromhttps://www.footprintnetwork.org/

    Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. Quarterly Journal of Economics, 110, 353-377. doi: 10.2307/2118443

    Ju-Long, D. (1982). Control problems of grey systems. Systems Control Letters, 1(5),288-294. Retrieved from https://www.sciencedirect.com/science/article/pii/S016769118280025X doi: https://doi.org/10.1016/S0167-6911(82)80025-X

    Kaika, D., & Zervas, E. (2013). The environmental kuznets curve (ekc) theory. part b:Critical issues. Energy Policy, 62, 1403-1411. doi: 10.1016/j.enpol.2013.07.130

    Kang, Y. Q., Zhao, T., & Yang, Y. Y. (2016, 4). Environmental kuznets curve for co2emissions in china: A spatial panel data approach. Ecological Indicators, 63, 231-239.doi: 10.1016/J.ECOLIND.2015.12.011

    Kearsley, A., & Riddel, M. (2010, 2). A further inquiry into the pollution haven hypothesis and the environmental kuznets curve. Ecological Economics, 69, 905-919. doi: 10.1016/J.ECOLECON.2009.11.014

    Kuznets, S. (1955). Economic growth and income inequality. The American Economic Review(1), 1–28.

    List, J. A., & Gallet, C. A. (1999, 12). The environmental kuznets curve: does one size fit all? Ecological Economics, 31, 409-423. doi: 10.1016/S0921-8009(99)00064-6

    Liu, S. J., & Xu, X. L. (2021, 1). The pollution halo effect of technology spillover and pollution haven effect of economic growth in agricultural foreign trade: two sides of the same coin? Environmental Science and Pollution Research 2021 28:16, 28, 20157-20173.(Spatial Durbin Model) doi: 10.1007/S11356-020-11786-W

    Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2),17–23. Retrieved 2022-12-14, from http://www.jstor.org/stable/2332142

    Narayan, P. K., & Narayan, S. (2010). Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy, 38(1), 661-666. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301421509006880 doi: https://doi.org/10.1016/j.enpol.2009.09.005

    Nasir, M., & Rehman, F. U. (2011, 3). Environmental kuznets curve for carbon emissions in pakistan: An empirical investigation. Energy Policy, 39, 1857-1864. doi: 10.1016/J.ENPOL.2011.01.025

    Ozturk, I., Al-Mulali, U., & Saboori, B. (2016, 1). Investigating the environmental Kuznets curve hypothesis: the role of tourism and ecological footprint. Environmental science and pollution research international, 23, 1916-1928. doi: 10.1007/S11356-015-5447-X

    Pata, U. K., & Caglar, A. E. (2021, 2). Investigating the ekc hypothesis with renewable energy consumption, human capital, globalization and trade openness for china: Evidence from augmented ardl approach with a structural break. Energy, 216, 119220. doi: 10.1016/j.energy.2020.119220

    Phillips, P. C. B., & Sul, D. (2003). Dynamic panel estimation and homogeneity testing under cross section dependence. The Econometrics Journal, 6, 217-259. doi: 10.1111/1368-423x.00108

    Rioja, F., & Valev, N. (2004). Does one size fit all?: a reexamination of the finance and growth relationship. Journal of Development Economics, 74(2), 429-447. Retrieved from https://www.sciencedirect.com/science/article/pii/S0304387804000227 doi: https://doi.org/10.1016/j.jdeveco.2003.06.006

    Shahbaz, M., Mutascu, M., & Azim, P. (2013). Environmental kuznets curve in romania and the role of energy consumption. Renewable and Sustainable Energy Reviews, 18,165-173. Retrieved from https://www.sciencedirect.com/science/article/pii/S1364032112005540 doi: https://doi.org/10.1016/j.rser.2012.10.012

    Siyuan, H., Xinping, X., & Huan, G. (2022, 8). A novel method for carbon emission forecasting based on ekc hypothesis and nonlinear multivariate grey model: evidence from transportation sector. Environmental Science and Pollution Research, 29. doi:10.1007/s11356-022-20120-5

    Suri, V., & Chapman, D. (1998, 5). Economic growth, trade and energy: implications for the environmental kuznets curve. Ecological Economics, 25, 195-208. doi: 10.1016/S0921-8009(97)00180-8

    The World Bank Group. (2022). The world bank – homepage. Retrieved from https://www.worldbank.org/en/home/

    Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit region. Economic Geography, 46, 234–240. Retrieved 2022-12-14, from http://www.jstor.org/stable/143141

    Wackernagel, M., Onisto, L., CallejasLinares, A., Is, L. F., & MendezGarcia, J. (1997).Ecological footprints of nations. how much nature do they use? how much nature do they have?.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE