| 研究生: |
陳柏誠 Chen, Bo-Cheng |
|---|---|
| 論文名稱: |
以軟微影製備糙化有機太陽能電池及其特性研究 Fabrication and Characterization of Texture Organic Solar Cells by Using Soft Lithography |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 有機太陽能電池 、軟微影 、糙化 |
| 外文關鍵詞: | Organic Solar Cell, Soft Lithography, Texture |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是在對高分子太陽能電池中的主動層做糙化處理,糙化過的主動層可提升對光捕捉的能力也增加主動層與陰極之間的接觸面積,進而提升短路電流密度(Jsc),使光電轉換效率(PCE)提升,糙化方法主要是利用軟微影技術,共有兩種母模,一為光柵結構,另一為糙化結構,經過實驗得知,含有光柵結構可使電流密度從8.95提升至9.68 mA/cm2,填充因子(F.F.)亦從0.489提升至0.591,開路電壓(Voc)維持為0.59V,因此效率從2.58提升至3.375%,含有糙化結構則可使電流密度從8.61提升至9.61 mA/cm2,填充因子(F.F.)從0.452提升至0.58,開路電壓(Voc)維持為0.59V,因此效率從2.3提升至3.29%,後續討論提升效率的主因為何,並找出粗糙度(Ra)與效率之間的關係,發現當粗糙度較低時(<7.47nm)可使短路電流密度及填充因子上升,達到提升光電轉換效率的目的。
The purpose of this study is to rough the active layer of polymer solar cell. The rough active layer not only enhance the light trapping but also add the contact area between active layer and the cathode. It will increase the short-circuit current density (Jsc) and then improve the Power Conversion Efficiency (PCE).
Soft Lithography is the main way of rough process. There are two kinds of mold. One is grating Structure. The other is rough structure. The result of experiment shows that Active layer with grating structure will lead the current density up to the 9.68 from 8.95. The fill factor will also up to 0.591 from 0.489. As to the open circuit voltage, it will maintain 0.59V. In summary, the efficiency will up to 3.375% from 2.58%. The result of experiment shows that Active layer with rough structure will lead the current density up to the 9.61 from 8.61. The fill factor will also up to 0.58 from 0.452. As to the open circuit voltage, it will maintain 0.59V. In summary, the efficiency will up to 3.29% from 2.3%.
Furthermore, we discussed the main reason why the efficiency would be higher and found the relation between Ra and the efficiency. When the surface roughness is less than 7.47nm, the short-circuit current density and the fill factor will increase. And then, to reach the purpose, that is, increase the Power Conversion Efficiency.
參考文獻
[1] O'Regan, B. & Gratzel, M., "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2," Nature, 353, 737-740 (1991)
[2] Kearns, D. & Calvin, M., "Photovoltaic effect and photoconductivity in laminated organic systems," J. Chem. Phys., 29,950-951 (1958)
[3] Tang, C. W., "Two-layer organic photovoltaic cell," Appl. Phy. Lett., 48, 183-185 (1986)
[4] Peumans, P., Forrest, S. R., "Very-high-efficiency double-heterostructure opper phthalocyanine/C60 photovoltaic cells," Appl, Phys. Lett., 79,126-128 (2001)
[5] Tsukamoto, J., Ohigashi, H., Matsumura, K., Takahashi, A., "A Schottky-barrier type solar-cell using polyacetylene," Jpn. J. Appl. Phys., 20,L127-L129 (1981)
[6] Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. E., Smalley, R. E., "C60-buckminsterfulleren," Nature, 318,162-163 (1985)
[7] Yu, G., Pakbaz, K., Heeger, A.J., "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity," Appl. Phys. Lett., 64, 3422-3424 (1994)
[8] Yu, G., Gao, J., Hummelen, J., Wudl, F., Heeger, A. J., "Polymer hotovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, 270, 1789-1791 (1995)
[9] Schilinsky, P., Waldauf, C., Brabec, C. J., "Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors," Appl. Phys. Lett., 81, 3885-3887 (2002)
[10] Padinger, F., Rittberger, R. S., Sariciftci, N. S., "Effects of postproduction treatment on plastic solar cells," Adv. Funct. Mater., 13, 85-88 (2003)
[11] Kim, K., Liu, J., Namboothiry, M. A. and Carroll, D. L., "Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photocoltaic," Appl. Phys. Lett. 90 , 163511 (2007)
[12] Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., Brabec, C. J., "Design Rules for Donors in Bulk-Heterojunction SolarCells—Towards 10% Energy-Conversion Efficiency," Advanced Materials.18,789-794,2006
[13] Gaudiana, R., Brabec C. J., "Organic materials:fantastic plastic," Nat. Photonics2 (2008) 287–289.
[14] Hsieh, C. H., Cheng, Y. J., Li, P. J., Chen, C. H., Dubosc, M., Liang, R. M., Hsu, C. S., "Highly efficient and stable inverted polymer solar cells integrated with across-linked fullerene material as an interlayer," J. Am. Chem. Soc. 132(2010) 4887–4893.
[15] Srinivas, S., Ziruo, H., Li-Min, C. and Yang, Y., "Tandem polymer photovoltaic cells—current status, challenges and future outlook," Energy Environ. Sci., 2011, 4, 1606-1620
[16] Hsiang-Yu, C., Jianhui, H., Shaoqing, Z., Yongye, L., Guanwen, Y., Yang, Y., Luping, Y., Yue, W. and Gang, Li., "Polymer solar cells with enhanced open-circuit voltage and efficiency," Nature Photonics 3, 649-653 (2009)
[17] Tvingstedt, K., Zilio, S. D., Inganäs, O. and Tormen, M., "Trapping light with micro lenses in thin film organic photovoltaic cells," Optic. Expres. 16 (2008) 21608.
[18] Niggemann, M., Glatthaar, M. , Lewer, P. , Muller, C. , Wagner, J. and Gombert, A., "Functional microprism substrate for organic solar cells," Thin Solid Films 511, 628-633 (2006).
[19] Nalwa, K. S., Park, J.-M., Ho, K.-M., Chaudary, S., "On realizing higher efficiency polymer solar cells using a textured substrate platform," Adv. Mater. 23, pp. 112-116, 2011.
[20] Niggemann, M., Glatthaar, M., Gombert, A., Hinsch, A., and Wittwer, V., "Diffraction gratings and buried nano-electrodes—architectures for organic solar cells," Thin Solid Films 451-52, 619 (2004)
[21] Brabec, C. J., Cravino, A., Meissner, D., Sariciftci, N. S., Rispens, M. T., Sanchez, L., Hummelen, J. C. and Fromberz, T., "The influence of materials work function on the open circuit voltage of plastic solar cells," Thin Solid Film 403-404 , 368 (2002)
[22] Brabec, C. J., Dyakonov, V., Parisi, J., Sariciftci, N.S., "Organic Photovoltaics: concepts and realization", Springer, New York 2003
[23] Kietzke, T., "Recent Advances in Organic Solar Cells," Advances in OptoElectronics, Volume 2007, 40285, 15 pages,2007
[24] Moliton, A., Nunzi, J.-M., "How to model the behaviour of organic photovoltaic cells," Polym Int 0959–8103, 2006
[25] Perret, C., Gourgon, C., Lazzarino, F., Tallal, J., Landis, S. and Pelzer, R., "Characterization of 8-in. wafers printed by nanoimprint lithography," Microelectronic Engineering, Vol.73-74, 2004: 172-177
[26] Chang, J. H., and Yang, S. Y., "Gas Pressurized Hot Embossing for Transcription of Micro-Features," Microsystem Technologies, 10, 76-80 (2003).
[27] Chang, J.-H., Cheng, F.-S., Chao, C.-C., Weng, Y.-C., Yang, S.-Y. and Wang, L. A., "Direct imprinting using soft mold and gas pressure for large area and curved surfaces," J. Vac. Sci. Technol. A 23(6), Nov/Dec 2005,pp.1687-1690
[28] Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L. G., and Zhuang, L., "Sub-10 nm imprint lithography and applications," Journal of Vaccuum Science & Technology B, Vol. 15, pp. 2897, 1997.
[29] Colburn, M. E., Johnson, S., Stewart, M., Damle, S., Bailey, T. C., Choi, B., Wedlake, M., Michaelson, T., Sreenivasan, S.V., Ekerdt, J. G. and Willson C. G., "Step and Flash Imprint Lithography: A new approach to high resolution patterning," Proc. SPIE, 3676(I), 379 (1999)
[30] Xia, Y., Zhao, X.-M., Whitesides, G. M., "Pattern transfer: Self-assembled monolayers as ultrathin resists," Microelectronic. Eng. 32, pp. 255-268 (1996)
[31] Xia, Y., and Whitesides, G. M., "Soft Lithography," Angew. Chem. Int. Ed. 37, pp. 550-575 (1998).
[32] Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B. M. W., A. Spiering J. H., Janssen, R. A. J., Meijer, E. W., Herwig, P. and de Leeuw, D. M., "Two-dimensional charge transport in self-organized,high-mobility conjugated polymers," Nature 401 , 685 (1999)
[33] Hummelen, J. C., Knight, B. W., Lepeq, F., Wudl, F., Yao, J. and Wilkins, C. L., "Preparation and Characterization of Fulleroid and Methanofullerene Derivatives," J. Org. Chem. 60 , 532 (1995)
[34] Meijer, E. J., de Leeuw, D. M., Setayesh, S., Veenendaal, E. V., Huisman, B. H., Blom, P. W. M., Hummelen, J. C., Scherf, U. and Klapwijk, T. M., "Solution-processed ambipolar organic field-effect transistors and inverters," Nat. Mater. 2 , 678 (2003)
[35] Mason, M. G., Hung, L. S., Tang, C. W., S. Lee, T., Wong K. W. and Wang, M., "Characterization of treated ingium-tin-oxide surface used electroluminescent devices," J. Appl. Phys. 86 , 1688 (1999)
[36] Huang, J., Miller, P. F., de Mello, J. C., de Mello, A. J., Bradley, D. D. C., "Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films," Synth. Met. 2003, 139, 569.
[37] Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K. and Yang, Y., "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends," Natere materials 4 , 864 (2005)
[38] Kim, Y., Choulis, S. A., Nelson, J., Bradley, D. D. C., Cook, S. and Durrant, J. R., "Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene," Appl. Phys. Lett. 86 , 063502 (2005)
[39] Lee, J. H., Kim, D. W., Jang, H., Choi, J. K., Geng, J., Jung, J. W., Yoon, S. C., Jung, H. T., "Enhanced solar-cell efficiency in bulk-heterojunction polymer systemsobtained by nanoimprinting with commercially available AAO membrane filters," Small 5 (19) (2009) 2139–2143.