簡易檢索 / 詳目顯示

研究生: 盧天民
Lu, Tien-Min
論文名稱: 三維電子系統之熱傳分析
Three-Dimensional Convection Heat Transfer in Electronic Equipment Cooling
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 83
中文關鍵詞: 熱傳導有限體積法格拉荷夫數雷利數自然對流雷諾數
外文關鍵詞: Prandtl number, Natural convection, Reynolds number, Grashof number, Heat transfer, Rayleigh number, finite volume method
相關次數: 點閱:95下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文研究的目的在於利用數值方法模擬分析三維封閉空間流場之對流,數值方法是以上風的有限體積法來求解Navier-Stokes equation,在連續方程式中加入人工壓縮因子(artificial compressibility )及壓力對時間的微分項,其中對流項採用高階的上風有限體積法,進而利用DDADI數值法對時間積分,並加入隱式殘值平滑性(implicit residual smoothing)加速穩態計算的收斂性。
      本篇的兩個物理問題則是應用三維封閉空間的自然對流原理,首先研究在垂直壁上有3×3排列與壁面齊平(未凸起)的分離熱源,相對的壁面為等溫的冷板,模擬利用液態電介質來冷卻電子系統的模式,所以採用Pr=9,雷利數的範圍在104到107,展弦比為7.5。其次控制壁面上的凸起物為主要的熱源;熱源的相對面為等溫的冷板,其餘壁面為絕熱的條件,探討雷利數(Rayleigh number)、展弦比的改變對流場及溫度場的影響,以利在電子元件的散熱設計以及其它有著相同模式設備的熱處理參考。

      A numerical method is applied to simulate the three-dimensional convection heat transfer in enclosure. The numerical method solves three- dimensional steady Navior-Stokes equation coupling with the nature convection equation. The artificial compressibility method, a third-order upwind finite volume method, a DDADI time integration and an implicit residual smoothing were applied in the numerical method to achieve a high-order accurate method.
      This thesis presents a three-dimensional computational study of natural convection cooling of two models. First, a 3-by-3 array of discrete heat sources flush-mounted on one vertical wall. And in order to simulate dielectric cooling of electronic system, Pr=9 is used, the range of Rayleigh number varies from 104〜107 and aspect ratio is 7.5. The second model, one block is mounted on vertical wall of a rectangular enclosure filled with air and is cooled by the opposite wall. Remaining walls are adiabatic. Computations are performed for a range of Rayleigh number while the heat block aspect ratio varies. The effects of Rayleigh number and block aspect ratio on heat transfer characteristics are investigated. Then some empirical relations are established to provide the engineers with some references on the electronic packaging or other heat transfer problems.

    中文摘要 英文摘要 致 謝 目 錄 圖表目錄 符號說明 第一章 緒 論 1 第二章 數值方法 5   2.1統御方程式 5   2.2空間差分 6   2.3時間積分 10   2.4 DDADI數值法 11   2.5邊界條件 12   2.6數值方法加速收斂 13   2.7收斂標準 13   2.8格點系統 14 第三章 程式驗證 15   3.1三維封閉立方的自然對流(一) 15   3.2三維封閉立方的自然對流(二) 19 第四章 結果與討論 23   4.1三維封閉空間內3×3分離排列熱源之冷卻 23   4.2三維封閉空間內之凸起熱源流場分析 27 第五章 結論 30 參考文獻 31 圖 34 表 80 自述 83 著作權聲明 84

    1.E.James,Morris,”The Design and Processing Technology of Electronic Packaging,” Workshop in The Design And Processing Technology of Electronic Packaging,1997.

    2.S.Oktay,R.Hannemann and A.Bar-Cohen,” High Heat from a Small Package,” Mechanical Engineering, Vol.108, No.3, March, pp.36-42, 1986.

    3.M.Afroid and A.Zebib,” Three-Dimensional Laminar and Turbulent Natural Convection Cooling of Heated Blocks,” Numerical Heat Transfer, Part A, Vol.19, pp.405-424, 1991.

    4.D.E. Wroblewski, Y.K. Joshi,” Computations of Liquid Immersion Cooling for a Protruding Heat Source in a Cubical Enclosure,” Int. J. of Heat and Mass Transfer, Vol.36, No.5, pp.1201-1218, 1993.

    5. D.E. Wroblewski, Y.K. Joshi,” Liquid Immersion Cooling of a Substrate-Mounted Protrusion in a Three-Dimensional Enclosure:The Effects Geometry and Boundary Conditions,” ASME, Journal of Heat Transfer, Vol.116, pp.112-119, 1994.

    6.Y. Liu, P.T. Nhan, R. Kemp, X.L. Luo,” Three-Dimensional Coupled Conduction-Convection Problem for Three Chips Mounted on a Substrate in an Enclosure,” Numerical Heat Transfer, Part A, Vol. 32, pp.149-167, 1997.

    7.S.K.W. Tou, C.P. Tso, X. Zhang,” 3-D Numerical Analysis of Natural Convective Liquid Cooling of a 3×3 Heater Array in Rectangular Enclosures,” Int. J. of Heat and Mass Transfer, Vol.42, pp.3231-3244, 1999.

    8.T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk,” A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure,” Int. J. Heat Mass Transfer, Vol.34, No.76, pp.1543-1557, 1990.

    9.R.J. Krane and J. Jessee,” Some Detailed Field Measurements for a Natural Convection Flow in a Vertical Square Enclosure,” Proc. 1st ASME-JSME Thermal Engng Joint Conf., Vol.1, pp.323-329, 1983.

    10.S.M. Bilski, J.R. Lloyd and K.T.Yang,” An Experimental Investigation of The Laminar Natural Convection Velocity in Square and Partitioned Enclosures,” Proc. 8th Int. Heat Transfer Conf., Vol.4, pp.1513-1518, 1986.

    11.Y. Le Peutrec, G. Lauriat,” Effects of The Transfer at The Side Walls on Natural Convection in Cavities,”
    ASME, Journal of Heat Transfer, Vol.112, pp.370-378, 1990.

    12.Shunichi Wakitani,” Numerical Study of Three- Dimensional Oscillatory Natural Convection at Low Prandtl Number in Rectangular Enclosures,” ASME, Journal of Heat Transfer, Vol.123, pp.77-83, 2001.

    13.W.H. Leong, K.G.T. Hollands, A.P. Brunger,” Experimental Nusselt Numbers of a Cubical-Cavity Benchmark Problem in Natural Convection,” Int. J. of Heat and Mass Transfer, Vol.42, pp.1979-1989, 1999.

    14.G.D. Raithby, H.H. Wong,” Heat Transfer by Natural Convection Across Vertical Air Layers,” Num. Heat Transfer, Vol.4, pp.447-457, 1981.

    15.P. Le Quere,” Accurate Solutions to The Square Thermally Driven Cavity at High Rayleigh Number,” Computers Fluids, Vol.20, No.1, pp.29-41, 1991.

    16.戴振豐,” 三維不可壓縮流場之數值方法研發,” 成功大學航太所碩士論文, 1997年六月.

    17.黃煥峰,” 電子元件流場之熱傳分析,” 成功大學航太所碩士論文, 1998年六月.

    下載圖示 校內:立即公開
    校外:2002-07-08公開
    QR CODE