| 研究生: |
柯柏銓 Ke, Bo-Quan |
|---|---|
| 論文名稱: |
局部圓形凹痕及尖銳凹痕圓管在循環彎曲負載下之疲勞壽命預測 Fatigue Life Prediction of Local Round-dented and Sharp- dented Circular Tubes under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 有限元素分析 、局部凹痕圓管 、完全反覆應力 |
| 外文關鍵詞: | Finite Element ANSYS Analysis, Local-dented 6061-T6 Aluminum Alloy Tubes, Cyclic Bending, Stress Amplitudes, Fatigue Model |
| 相關次數: | 點閱:149 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究先以有限元素分析軟體ANSYS Workbench 15.0來分析不同深度局部切痕6061-T6鋁合金管承受對稱曲度循環彎曲負載下的應力幅度,接著,再根據王建峻[24]、李致頤[25]、吳政昌[26]實驗所獲得疲勞損壞圈數,提出適當疲勞理論並求得相關的疲勞參數。本文所考慮的6061-T6鋁合金管尺寸為:圓形凹痕有三種分別為:外徑= 30mm厚度 = 0.5mm、外徑= 31mm厚度 = 1mm與外徑 = 33mm厚度= 2mm,而圓形凹痕的深度為: 0、0.3、0.6、0.9及1.2 mm。尖銳凹痕為:外徑 = 33mm厚度= 2mm,而尖銳凹痕的深度為: 0、0.3、0.6、0.9及1.2 mm。
由有限元素ANSYS分析結果顯示,當凹痕深度相同時,控制曲度越大時,應力值也就越大。此外,當考慮控制曲度相同時,隨著凹痕深度越大,應力值也就越大。雖然所考慮彎曲負載的曲度為對稱的情況,但循環彎曲的最大應力值和最小應力值有差異,因此分析時必須考慮平均應力的影響。最後,根據有限元素ANSYS所求得的應力幅度,並導入Walker[20]所提出的形式,求得完全反覆的應力幅度後,再與上述實驗所得的循環至損壞圈數繪製在雙對數座標中。接著,利用最小平方法近似出一條直線,則相關的疲勞理論可簡易的建立,且所對應的參數即可透過直線的斜率與截距求得。
關鍵字:有限元素分析、局部凹痕圓管、完全反覆應力
Fatigue Life Prediction of Local Round-dented and Sharp-
dented Circular Tubes under Cyclic Bending
KE, BO-QUAN
PAN,WEN-FUNG
Department of Engineering Science
NationalChengKungUniversity
Summary
In this study, the finite element software ANSYS Workbench 15.0 is used to analyze stress amplitudesfor dented 6061-T6 aluminum tubes with different dent depths under cyclic bending. Next, according to experimental cycles of fatigue from Wang [24], Li [25] and Wu [26], a proper fatigue theory is proposed and related material parameters are determined. The dimensions of 6061-T6 aluminum tubes includethree different round dents of outer diameter =30 mm, thickness =0.5 mm, outer diameter =31mm, thickness =1mm and outer diameter =33 mm, thickness =2 mm. The depths of the rounddent are 0,0.3,0.6,0.9 and 1.2 mm. Sharpdentsarewith outer diameter = 33 mm and thickness =2 mm. The depths of the sharp dent are 0,0.3,0.6,0.9 and 1.2 mm.
According to the analysis from ANSYS, higher controlled curvatures lead to larger stress amplitudes for a constant dent depth. In addition, higher dent depths cause larger stress amplitudes for a constant controlled curvature. Although the controlled curvature is symmetrical under cyclic bending, the amounts of the maximum and minimum stresses are different. Therefore, the fatigue analysis should consider the mean stress effect.
Finally, according to the stress amplitudesobtained from the finite element ANSYS and importing the form proposed by Walker [20], the complete reverse stress amplitudes are determined. Then, the values and experimental number of cycles to produce failure are plotted on the log-log scale. Next, the least-square method is employed to approximate a straight line. Thus, the related fatigue theory can easily to set up and the parameters can be determined from the slope and intercept of the straight line.
Keywords: Finite Element ANSYS Analysis, Local-dented 6061-T6 Aluminum Alloy Tubes, Cyclic Bending,Stress Amplitudes, Fatigue Model.
參考文獻
1. S. Kyriakides and P. K. Shaw, “Response and Stability of Elastoplastic Circular Pipe under Combined Bending and External Pressure,"Int. J. Solids Struct., Vol.18, No.11, pp.957-973, 1982.
2. P. K. Shaw and S. Kyriakides, “Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending,"Int. J. Solids Struct., Vol.21, No.11, pp.1073-1100, 1985.
3. E. Cornoa and S. Kyriakides, “On the Collapse of Inelastic Tubes under Combined Bending and Pressure,"Int. J. Solids Struct., Vol.24,No.5, pp.505-535, 1988.
4. S. Kyriakides and G. T. Ju, “Bifurcation And Localization Instabilities In Cylindrical Shells Under Bending-I. Experiment,"Int. J. Solids Struct, Vol.29, No.9, pp.1117-1142, 1992.
5. W. F. Pan, T. R. Wang and C. M. Hsu, “A Curvature-Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending,"Experimental Mechanics, Int.J., Vol.38, No.2, pp. 99-102, 1998.
6. W. F. Pan and C. H. Fan, “An Experimental Stady on the Effect of Curvature-Rate at Preloading Stage on Subsequent Creep or Relaxation of Thin-Walled Tubes under Pure Bending,"JSME Int. J., Series A, Vol.41, No.4, pp.525-531,1998.
7. Xiao,X.R, “Modeling of Load Frequency Effect on Fatigue Life of Thermoplastic Composites,"Journal of Composite Materials, Vol.33, No.2, pp.1141-1158,1998.
8. Lee,K.L.,Pan, W.F.,and Kuo,J.N., “The Influence of the Diameter-to-Thickness Ratio on the Stability of Circular Tubes under Cyclic Bending,"International Journal of Solids and Structures, Vol.38, pp. 2401-2413,2001.
9. 蘇育德, ”複合材料疲勞壽命之探討,” 國立雲林科技大學機械工程系碩士論文, 2001。
10. W. F. Pan andK. L. Lee,”The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”,JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 ,2002.
11. K. L. Lee, W. F. Pan and C. M. Hsu, “Experimental and theoretical evaluations of the effect between diameter-to-thickness ratio and curvature-rate on the stability of circular tubes under cyclic bending,"JSME International Journal Series A, Vol.47, No.2, pp.212-222, 2004.
12. R. Mahdavinejad, “Finite element analysis of machine and workpiece instability in turning,” International Journal of Machine Tools and Manufacture, Vol. 45, pp.753-760, 2005.
13. M. X. Zhou, Q. A. Huang and Ming Qin, “Modeling, design and fabrication of a triple-layered capacitive pressure sensor,” Sensors and Actuators A:Physical, Vol.117, pp.71-81, 2005.
14. Z. F. Wen, X. S. Jin and W. H. Zhang, “Contact-impact stress analysis of rail joint region using the dynamic finite element method,” Wear, Vol. 258, pp.1301-1309, 2005.
15. 張高華、李國龍和潘文峰,「圓管承受循環彎曲負載截面變形量測器之設計」,技術學刊,第二十三卷,第一期,21-28頁,2008。
16. K. H. Chang andW. F. Pan,“Buckling life estimation of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 2009.
17. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No.3,pp. 403-411, 2010.
18. K. L. Lee, Y. T. Chan and W. F. Pan, Finite element ANSYS analysis of the behavior for 6061-T6 aluminum tubes under cyclic bending with external pressure, Journal of Civil Engineering and Architecture, Vol. 8,No. 6, pp. 673-679, 2014.
19. Smith, K. N., Watson, P. and Topper, T. H. (1970) A stress-strain function for the fatigue of materials. J. Mater. 5,767–778.
20.WALKER, K. The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum: Effect of Environment and Complex Load Historyon Fatigue Life [R]. West Conshohocken: American Society Testing and Materials, STP 462,1970.
21. 曾詠茹, ” 有限元素分析不同外徑/壁厚比局部圓形凹痕圓管在循環彎曲負載下之行為,” 國立成功大學工程科學系碩士論文, 20016。
22. 林倩如, ” 有限元素分析局部尖銳凹痕圓管在循環彎曲負載下之行為,” 國立成功大學工程科學系碩士論文, 20016。
23.孟慶勳, ” 有限元素分析局部凹痕圓管在循環彎曲負載下之行為,” 國立成功大學工程科學系碩士論文, 20015。
24.王建峻, ” 不同外徑/壁厚比局部圓形凹痕圓管在循環彎曲負載下行為及毀損之研究,” 國立成功大學工程科學系碩士論文, 20016。
25. 李致頤, ” 局部尖銳凹痕圓管在循環彎曲負載下行為及毀損之研究,” 國立成功大學工程科學系碩士論文, 20016。
26.吳政昌, ”凹痕圓管在循環彎曲負載下行為之實驗研究,” 國立成功大學工程科學系碩士論文, 20015。