| 研究生: |
黃漪茹 Huang, I-Ju |
|---|---|
| 論文名稱: |
初始條件與邊界效應對自由面漩渦之影響 The Influences of Initial and Boundary Conditions on the Free Surface |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 交互作用 、壁面效應 、靜置時間 、自由面漩渦 、暫態 |
| 外文關鍵詞: | interacting, wall effect, settling time, transient, vortex, free surface |
| 相關次數: | 點閱:134 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係針對一個在底部具有垂直出水管之水槽,在不同的液面初始高度、出水管口尺寸、排水孔與壁面之距離以及靜置時間,於排水及暫態自由面漩渦形成的過程中,觀察並量測流率、壓力以及初始氣凹與氣柱的生成等變化。
實驗結果顯示,初始進水的水位高低並不會改變流率趨勢的變化。只有因為出水管開口尺寸與出水管長度的不同,以及排水孔與壁面之相對位置不同,才會改變流率曲線的變化狀況,此流率變化與其排水截面積有關。在實驗過程中,一開始液體自由面外形平坦,隨著排水而使液面降至一定高度後,自由液面即產生初始氣凹,進而向下延伸而變成一氣柱。初始氣凹和氣柱生成時,所對應的液面高度會隨著初始水位高度而上升。若靜置時間愈久,初始氣凹與氣柱生成高度便愈低,經靜置幾小時後幾乎沒什麼變化。
就壁面效應而言,可分成單壁面的影響,以及直角壁面的影響;實驗結果顯示,出水孔離壁面愈近,初始氣凹與氣柱生成所對應之液面高度便愈低,也就是說,壁面會抑制初始氣凹與氣柱的生成。若同時由兩個出水孔排放水,其間所產生之交互作用,會互相抑制對方生成初始氣凹與氣柱。若兩出水孔之圓心距離在二倍出水口徑以下,一旦產生氣柱後,其氣柱下端會在兩孔間來回跳動,無法穩定。
This research investigates the transient characteristics of free surface vortex in a tank which has a vertical discharge pipe built on its bottom. The variations of flowrate, distributions of pressure, generations of dimple and critical submergence have been analyzed as initial submergence depth, size of the discharge pipe, distance between discharge pipe and wall and settling time are changed.
From the experiments, we found that the change of flowrate bears relation to the size, length and outlet design of the discharge pipe and distance between discharge pipe and wall rather than initial submergence depth. Furthermore, the cross-sectional area of discharging is the primary factor influencing the flowrate. As the water-draining process goes on, a dimple forms on the free surface of liquid which is originally flat after the water level drops to a specific height. The dimple develops downward continually and an air column is thus generated. The water level corresponding to when the dimple and the air column are formed rises with initial submergence depth. As settling time gets longer, the water level corresponding to dimple and air column formation decreases. After several hours, it reaches a steady value.
As to wall effects, they can be divided into two types: single wall effect, and corner effect. For a shorter distance between discharge pipe and wall, the formation of dimple and air column is slower, because the wall restrains the formation of dimple and air column. For water draining out of two discharge pipes, the formation of dimple and air column is also slower due to the mutual inhibition between the two vortices. If the distance between two discharge pipes is less than two times the pipe diameter, the air column is unstable.
1.Lugt, H. J., “Vortex Flow in Nature and Technology,” John Wiley & Sons, New York, 1983.
2.Shapiro, A. H., “Bath-Tub Vortex,” Nature, Vol.196, pp.1080-1081, 1962.
3.Binnie, A. M., “Some Experiments on the Bath-Tub Vortex,” Journal Mechanical Engineering Science, Vol.6, No.3, pp.256-257, 1964.
4.Trefethen, L. M., Milger, R. W., Fink, P. T., Luxton, R. E., and Tanner, R. I., “The Bath-Tub Vortex in the Southern Hemisphere,” Nature, Vol.207, pp.1084-1085, 1965.
5.Sibulkin, M., “A Note on the Bathtub Vortex,” Journal of Fluid Mechanics, Vol.14, pp.21-24, 1960.
6.Marris, A. W., “Theory of the Bathtub Vortex,” Journal of Applied Mechanics, Transaction of the ASME, Vol.34, pp.11-15, 1966.
7.Lubin, B. T., and Springer, G. S., “The Formation of a Dip on the Surface of a Liquid Draining from a Tank,” Journal of Fluid Mechanics, Vol.29, part 2, pp.385-390, 1967.
8.Anwar, H. O., “Coefficients of Discharge for Gravity Flow into Vertical Pipes,” Journal of Hydraulic Research, Vol.3, No.1, pp.1-19, 1965.
9.Anwar, H. O., Weller, J. A., and Amphlett, M. B., “Similarity of Free-Vortex at Horizontal Intake,” Journal of Hydraulic Research, Vol.16, No.2, pp.95-105, 1978.
10.Anwar, H. O., and Amphlett, M. B., “Vortices at Vertically Inverted Intake,” Journal of Hydraulic Research, Vol.18, No.2, pp.123-134, 1980.
11.Sato T., and Shiraishi M., “Switching Phenomenon of a Bathtub Vortex,” Transactions of the ASEM, Vol.61, pp.850-854, 1994.
12.Daggett, L. L., and Keulegan, G. H., “Similitude in Free-Surface Vortex Formations,” Journal of the Hydraulics Division, ASCE, Vol.100, No.HY11, pp.1565-1581, 1974.
13.Zielinski, P. B., and Villemonte, J. R., “Effect of Viscosity on Vortex-Orifice Flow,” Journal of the Hydraulics Division, ASCE, Vol.94, No.HY3, pp.745-752, 1968.
14.Feria, R. F., and Rojas, E. S., “On the Appearance of Swirl in a Confined Sink Flow,” Physics of Fluids, Vol.12, No.11, pp.3082-3085, 2000.
15.Lewellen, W. S., “A Solution for Three-Dimensional Vortex Flows with Strong Circulation,” Journal of Fluid Mechanics, Vol.14, part 3, pp.420-432, 1962.
16.Odgaard, A. J., “ Free-Surface Air Core Vortex,” Journal of Hydraulic Engineering, Vol.112, No.7, pp.610-620, 1986.
17.Zhou, Q. N., and Graebel, W. P., “Axisymmetric Draining of a Cylindrical Tank with a Free Surface,” Journal of Fluid Mechanics, Vol.221, pp.511-532, 1990.
18.Miloh, T., and Tyvand, P. A., “Nonlinear Transient Free-Surface Flow and Dip Formation Due to a Point Sink,” Physics of Fluids, Vol.A5, part 6, pp.1368-1375, 1993.
19.Munson, B. R., Young, D. F., and Okiishi, T. H., “Fundamentals of Fluid Mechanics,” 3rd Ed., John Wiley & Sons, New York, 1998.
20.Benedict, R. P., “Fundamentals of Temperature, Pressure, and Flow Measurements,” 2nd Ed., John Wiley & Sons, New York, 1977.
21.谷一郎, “流體力學實驗法,” 岩波書局, 1980.
22.宋書銓, “自由面漩渦之暫態分析,” 國立成功大學機械工程研究所碩士論文, 2002.