| 研究生: |
曾冠霖 Tseng, Kuan-Lin |
|---|---|
| 論文名稱: |
泵源調制向量雷射系統中的偏振模態特性與非線性動力學行為 Characteristics and nonlinear dynamics in an optical vector laser beam with pump modulation |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 向量光束 、幾何模態 、混沌 、極端事件 |
| 外文關鍵詞: | vector beam, geometric mode, chaos, extreme events |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過c-cut Nd:YVO4晶體以及四面鏡的共振腔架構,產生出具有不同結構的的向量光束,隨著腔長的改變,我們從光形圖與功率觀察不同偏振模態的轉換動態,發現兩種具有不同偏振特性的模態會有競爭泵源能量的行為產生。藉由在泵源加入調製訊號,整理出分岔圖、相關係數及極端事件比例,了解在不同腔長下,不同偏振模態之間的競爭造成的非線性動態行為差異。透過比較兩個不同偏振模態的相關性,得出偏振特性不同確實會造成兩個相同的模態表現出不同的動力學行為。我們也針對幾何模態本身進行比較,探討幾何模態的生成與腔長之間的關聯性。
This paper utilizes a c-cut Nd:YVO4 crystal and a four-mirror resonator configuration to generate vector beams with different structures. By varying the cavity length, we observe the dynamic transition of different polarization modes through optical patterns and power measurements. We observe a competitive behavior in pump source energy between two polarization modes with distinct characteristics. By introducing modulation signals into the pump source, bifurcation diagrams, correlation coefficients, and extreme events are organized to comprehend the nonlinear dynamic differences arising from the competition between different polarization modes at varying cavity lengths. Comparing the correlation of two different polarization modes, we conclude that different polarization characteristics indeed lead to diverse dynamical behaviors in two identical modes. We also investigate the relationship between the generation of geometric modes and the cavity length by comparing the geometric modes themselves.
[1] A.E.Siegman, “Lasers,” (1986).
[2] D. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers, ” Applied Optics 3, 523-526(1964).
[3] I. A. Ramsay and J. J. Degnan, “A Ray Analysis of Optical Resonators Formed by Two Spherical Mirrors, ” Applied Optics. 9, 385-398 (1970).
[4] M.-D. Wei, W.-F. Hsieh, and C. C. Sung, “Dynamics of an optical resonator determined by its iterative map of beam parameters, ” Optics Communications 146, 201-207 (1998).
[5] H.-H. Wu, “Formation of off-axis beams in an axially pumped solid-state laser,” Opt. Express 12, 3459-3464 (2004).
[6] C.-P. Chiu, C.-Y. Kuo, C.-C. Wang, H.-H. Wu, and M.-D. Wei, “Geometric ring mode in a linear cavity,” Laser Physics 28, 085001, (2018).
[7] S. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Perseus Books, 1994).
[8] Edward N. Lorenz, “Deterministic Nonperiodic Flow, ” Journal of the Atmospheric Sciences 20, 2 130-141 (1963).
[9] D.V. Ivanov, Ya.I. Khanin, I.I. Matorin, A.S. Pikovsky, “Chaos in a solid-state laser with periodically modulated losses,” Physics Letters A, 89, 229-230(1982).
[10] Midavaine, T. Dangoisse, D. Glorieux, P.Glorieux, “Observation of chaos in a frequency-modulated CO2 laser,” Phys Rev Lett, 55 (19), (1989).
[11] Fan Zhang, P.L. Chu; R. Lai, G.R. Chen, “Dual-Wavelength Chaos Generation and Synchronization in Erbium-Doped Fiber Lasers,” IEEE Photonics Technology Letters, 17, 549-551, (2005).
[12] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, Nature 450, 1054 (2007)
[13] P. Kjeldsen, “A sudden disaster-in Extreme Waves, ” Rogue Waves 2000, 19-35 (2001).
[14] S. Aberg and G. Lindgren, “Height distribution of stochastic Lagrange ocean waves, ” Prob. Eng. Mech. 23, 359-363 (2008)
[15] Stéphane Randoux and Pierre Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Optics Letters 37,500-502 (2002)
[16] C. Metayer, A. Serres, E. J. Rosero, W. A. Barbosa, F. M. de Aguiar, J. R. Leite, and J. R. Tredicce, "Extreme events in chaotic lasers with modulated parameter," Opt. Express 22, 19850-19859 (2014).
[17] Wei, M.-D.; Chen, C.-H.; Wu, H.-H.; Huang, D.-Y.; Chen, C.-H. Chaos suppression in the transverse mode degeneracy regime of a pumpmodulated Nd:YVO4 laser. Journal of Optics A: Pure and Applied Optics, 11 (4), 045504 (2009).
[18] Qiwen Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1-57 (2009).
[19] C. Rosales-Guzman, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20, 123001 (2018).
[20] S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239(1990)
[21] T. Hirayama, Y. Kozawa, T. Nakamura, and S. Sato, “Generationof a cylindrically symmetric, polarized laser beam with narrow linewidth and fine tenability,” Opt. Express 14, 12839–12845(2006).
[22] J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14, 3304 (2006).
[23] R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[24] K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006)
[25] J. Durnin, J. Miceli Jr, and J. Eberly, “Diffraction-free beams,” Physical review letters 58, 1499 (1987).
[26] S. Chávez-Cerda, and G. New, “Evolution of focused Hankel waves and Bessel beams,” Optics communications 181, 369-377 (2000).
[27] S. Chávez-Cerda, and G. New, “Evolution of focused Hankel waves and Bessel beams,” Optics communications 181, 369-377 (2000).
[28] M.-D. Wei, W.-L. Shiao, and Y.-T. Lin, “Adjustable generation of bottle and hollow beams using an axicon,” Optics communications 248, 7-14 (2005)
[29] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. Wiley, (2019)
[30] Kumar A and Ghatak A 2011 Polarization of Light with Applications in Optical Fibers (Bellingham, WA: SPIE Press)
[31] Galvez E J, Khadka S, Schubert W H and Nomoto S, “Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light,” Appl. Opt. 51 2925–34(2012)
[32] G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-Order Poincare´ Sphere, Stokes Parameters, and the Angular Momentum of Light, ” Phys. Rev. Lett. 107, 053601
[33] X. Yi, Y. Liu, X. Ling, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Hybrid-order Poincaré sphere, ” Phys. Rev. A 91, 023801
[34] W. Klische, H. Telle, and C. Weiss, "Chaos in a solid-state laser with a periodically modulated pump," Opt. Lett. 9, 561-563 (1984).
[35] C. Metayer, A. Serres, E. J. Rosero, W. A. Barbosa, F. M. de Aguiar, J. R. Leite, and J. R. Tredicce, "Extreme events in chaotic lasers with modulated parameter," Opt. Express 22, 19850-19859 (2014).
[36] J. Visser, N. J. Zelders, and G. Nienhuis, “Wave description of geometric modes of a resonator, ”J. Opt. Soc., 1559-1566 (2005).
[37] J. Dingjan, M. P. van Exter, and J. P. Woerdman, “Geometric modes in a single-frequency Nd:YVO4 laser, ”Optics Communications, 345- 351(2001).
校內:2027-01-25公開