| 研究生: |
林俊宏 Lin, Jun-Hong |
|---|---|
| 論文名稱: |
考慮不完美界面影響之熱傳導超材料設計 Design of thermal metamaterials with the effect of imperfect interfaces |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 熱傳導超材料 、不完美界面 、熱隱形 、熱屏蔽 、熱集中 、等效熱傳導率 、熱接觸電阻 、中性內含物 、散射場消除 |
| 外文關鍵詞: | thermal metamaterials, imperfect interfaces, thermal invisibility, thermal cloak, concentrator, effective conductivity, thermal contact resistance, neutral inclusion, scattering cancellation |
| ORCID: | https://orcid.org/0000-0002-8126-0343 |
| 相關次數: | 點閱:253 下載:55 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱傳導會受到不同材料組成、幾何形狀、排列以及材料交界面連結等情況影響。如何利用材料性質的差異來導引或操控熱流,達到特定功能需求,近年來吸引許多相關領域學者投入心力研發。利用複合材料力學等效介質觀念,結合不同材料特性,以二種或多種材料組成,搭配適當之微結構設計,使其能夠在宏觀上展現特定的等效材料性質,此客製化與具可調性的人造材料,即為熱傳導超材料的主要概念。而在實際製作上,無論是超材料與內含物或與外界材料的交界面,或是超材料本身為利用複合材料疊層所製造而產生之材料交界面,皆有可能產生不完美界面。尤其當熱裝置尺度愈小時,其影響愈顯著。然而,過往大部份相關研究皆未考量界面非理想時所造成之影響,亦缺乏詳盡理論解析結果來探討其不完美界面性質。本文將探討高傳導與低傳導二類極端的不完美界面對於熱傳導超材料設計的影響。在熱穩態情況且考慮不完美界面效應下,本文證明當滿足「強隱形條件」時,二維圓形或三維球形超材料所包覆的物件皆可完美隱形;反之,在考慮暫態反應時,僅能在滿足「弱隱形條件」下可以使觀察者對物件的可見度最小化。本文在考慮不完美界面下,推導穩態強隱形條件與暫態弱隱形條件,並皆以明確與簡潔的形式呈現,以利於描繪其物理現象,及便於熱超材料的設計。此外,本文亦探討在滿足隱形條件下,操控熱集中與熱屏蔽效應之可能性。除了理論分析外,亦以COMSOL有限元素法軟體模擬並與理論解相互印證。本研究希望能夠在未來讓學者針對複合材料在熱傳導過程中可能遇到的不完美界面影響,參考本文之理論結果而設計更符合現實狀況之熱傳導超材料。
Thermal metamaterials, defined as artificial materials suitably designed to act as functional materials that can exhibit desired physical properties, have drawn massive research recently. Most of the previous studies tacitly considered that the interface between two dissimilar materials in contact is perfectly bonded. In principle, imperfectness across the interface always exists and the effect is particularly pronounced in small length-scales. In this dissertation the effect of two typical imperfect interfaces, which are referred to as low conductivity- and high conductivity-type interfaces, will be thoroughly investigated. Incorporating the effect of imperfect interfaces, we show that an object can be made completely invisible for the steady-state cases under a certain condition referred to as “invisibility condition”, or referred to as “strong invisibility condition”. This unprecedented condition is analytically derived in closed forms and numerically examplified. On the other hand, it is shown that an object can only be made partially concealed in a transient state. In the quasi-static limit, the “weak invisibility conditions” that can minimize the visibility to the observers with or without the effect of imperfect bonding interfaces are derived in an explicit and concise expression. Thermal shielding and concentrating effect are exemplified. Finite element simulations based on the software COMSOL are presented to validate our theoretical results as well. This work opens an avenue to design thermal metamaterials through a complete thermal transient conduction process counting into the effect of imperfect interfaces.
[1] T. Chen, C.-N. Weng, and J.-S. Chen, Cloak for curvilinearly anisotropic media in conduction, Appl. Phys. Lett. 93, 114103 (2008).
[2] C. Z. Fan, Y. Gao, and J. P. Huang, Shaped graded materials with an apparent negative thermal conductivity, Appl. Phys. Lett. 92, 251907 (2008).
[3] R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Experiments on transformation thermodynamics: molding the flow of heat, Phys. Rev. Lett. 110, 195901 (2013).
[4] S. R. Sklan and B. Li, Thermal metamaterials: functions and prospects, Natl. Sci. Rev. 5, 138 (2018).
[5] Y.-L. Tsai, J. Li, and T. Chen, Simultaneous focusing and rotation of a bifunctional thermal metamaterial with constant anisotropic conductivity, J. Appl. Phys. 126, 095103 (2019).
[6] T. Han, T. Yuan, B. Li, and C. W. Qiu, Homogeneous thermal cloak with constant conductivity and tunable heat localization, Sci. Rep. 3, 1593 (2013).
[7] T. Chen, C.-N. Weng, and Y.-L. Tsai, Materials with constant anisotropic conductivity as a thermal cloak or concentrator, J. Appl. Phys. 117, 054904 (2015).
[8] M. Farhat, P. Y. Chen, H. Bagci, C. Amra, S. Guenneau, and A. Alù, Thermal invisibility based on scattering cancellation and mantle cloaking, Sci. Rep. 5, 9876 (2015).
[9] Y. Li, X. Shen, Z. Wu, J. Huang, Y. Chen, Y. Ni, and J. Huang, Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes, Phys. Rev. Lett. 115, 195503 (2015).
[10] S. Narayana and Y. Sato, Heat flux manipulation with engineered thermal materials, Phys. Rev. Lett. 108, 214303 (2012).
[11] W.-S. Yeung, F.-Y. Yang, and R.-J. Yang, Analysis of a trilayer thermal cloak, AIP Adv. 10 (2020).
[12] J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science 312, 1780 (2006).
[13] G. W. Milton, M. Briane, and J. R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8, 248 (2006).
[14] G. W. Milton, The theory of composites (Cambridge University Press, Cambridge, 2002).
[15] A. N. Norris and W. J. Parnell, Static elastic cloaking, low-frequency elastic wave transparency and neutral inclusions, Proc. R. Soc. Lond. A 476, 20190725 (2020).
[16] A. Alù and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 016623 (2005).
[17] Q. Ji, X. Chen, G. Fang, J. Liang, X. Yan, V. Laude, and M. Kadic, Thermal cloaking of complex objects with the neutral inclusion and the coordinate transformation methods, AIP Adv. 9, 045029 (2019).
[18] Z. Zhu, X. Ren, W. Sha, M. Xiao, R. Hu, and X. Luo, Inverse design of rotating metadevice for adaptive thermal cloaking, Int. J. Heat Mass Transfer 176, 121417 (2021).
[19] T. Han, J. Zhao, T. Yuan, D. Y. Lei, B. Li, and C.-W. Qiu, Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials, Energy Environ. Sci. 6, 3537 (2013).
[20] P. L. Kapitza, The study of heat transfer in helium II, J. Phys.-Ussr 4, 181 (1941).
[21] X. Zheng and B. Li, Effect of interfacial thermal resistance in a thermal cloak, Phys. Rev. Appl. 13, 024071 (2020).
[22] A. Giri and P. E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces, Adv. Funct. Mater. 30, 1903857 (2019).
[23] R. C. Cammarata, Surface and interface stress effects in thin films, Progress in Surface Science 46, 1 (1994).
[24] R. Dingreville and J. Qu, Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids 53, 1827 (2005).
[25] A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas. 24, 413 (2003).
[26] A. Greenleaf, M. Lassas, and G. Uhlmann, On nonuniqueness for Calderón’s inverse problem, Math. Res. Lett. 10, 685 (2003).
[27] S. Guenneau and C. Amra, Anisotropic conductivity rotates heat fluxes in transient regimes, Opt. Express 21, 6578 (2013).
[28] S. Guenneau, C. Amra, and D. Veynante, Transformation thermodynamics: cloaking and concentrating heat flux, Opt. Express 20, 8207 (2012).
[29] M. Farhat, S. Guenneau, and S. Enoch, Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates, Phys. Rev. B 85, 020301 (2012).
[30] Y. Ma, L. Lan, W. Jiang, F. Sun, and S. He, A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity, NPG Asia Mater. 5, e73 (2013).
[31] E. M. Dede, T. Nomura, P. Schmalenberg, and J. Seung Lee, Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects, Appl. Phys. Lett. 103, 063501 (2013).
[32] H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Ultrathin three-dimensional thermal cloak, Phys. Rev. Lett. 112, 054301 (2014).
[33] T. Han, X. Bai, J. T. L. Thong, B. Li, and C. W. Qiu, Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials, Adv. Mater. 26, 1731 (2014).
[34] P. Zhang, Y. Xuan, and Q. Li, A high-precision instrumentation of measuring thermal contact resistance using reversible heat flux, Exp. Therm Fluid Sci. 54, 204 (2014).
[35] X. Shen, C. Jiang, Y. Li, and J. Huang, Thermal metamaterial for convergent transfer of conductive heat with high efficiency, Appl. Phys. Lett. 109, 201906 (2016).
[36] R. Hu, S. Zhou, Y. Li, D. Y. Lei, X. Luo, and C. W. Qiu, Illusion Thermotics, Adv. Mater. 30, 1707237 (2018).
[37] T. Han, P. Yang, Y. Li, D. Lei, B. Li, K. Hippalgaonkar, and C. W. Qiu, Full-parameter omnidirectional thermal metadevices of anisotropic geometry, Adv. Mater. 30, 1804019 (2018).
[38] R. Hu, S. Huang, M. Wang, X. Luo, J. Shiomi, and C.-W. Qiu, Encrypted thermal printing with regionalization transformation, Adv. Mater. 31, 1807849 (2019).
[39] H. Le Quang, D. C. Pham, G. Bonnet, and Q.-C. He, Estimations of the effective conductivity of anisotropic multiphase composites with imperfect interfaces, Int. J. Heat Mass Transfer 58, 175 (2013).
[40] H. Le Quang, Estimations and bounds of the effective conductivity of composites with anisotropic inclusions and general imperfect interfaces, Int. J. Heat Mass Transfer 99, 327 (2016).
[41] Y. Benveniste and T. Miloh, The effective conductivity of composites with imperfect thermal contact at constituent interfaces, Int. J. Eng. Sci. 24, 1537 (1986).
[42] Z. Hashin, Thin interphase/imperfect interface in conduction, J. Appl. Phys. 89, 2261 (2001).
[43] Y. Benveniste and T. Chen, On the Saint-Venant torsion of composite bars with imperfect interfaces, Proc. R. Soc. Lond. A 457, 231 (2001).
[44] J. Y. Li, Y. Gao, and J. P. Huang, A bifunctional cloak using transformation media, J. Appl. Phys. 108, 074504 (2010).
[45] H. Pham Huy and E. Sanchez-Palencia, Phénomènes de transmission à travers des couches minces de conductivitéélevée, J. Math. Anal. Appl. 47, 284 (1974).
[46] E. Sanchez-Palencia, Comportement limite d’un probleme de transmissiona travers une plaque faiblement conductrice, CR Acad. Sci. Paris Ser. A 270, 1026 (1970).
[47] Y. Benveniste and T. Miloh, Neutral inhomogeneities in conduction phenomena, J. Mech. Phys. Solids 47, 1873 (1999).
[48] T. Miloh and Y. Benveniste, On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces, Proc. R. Soc. Lond. A 455, 2687 (1999).
[49] A. Javili, S. Kaessmair, and P. Steinmann, General imperfect interfaces, Comput. Methods Appl. Mech. Eng. 275, 76 (2014).
[50] Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Solids 54, 708 (2006).
[51] S. T. Gu, E. Monteiro, and Q. C. He, Coordinate-free derivation and weak formulation of a general imperfect interface model for thermal conduction in composites, Compos. Sci. Technol. 71, 1209 (2011).
[52] P. Bövik, On the modelling of thin interface layers in elastic and acoustic scattering problems, Q. J. Mech. Appl. Math. 47, 17 (1994).
[53] T. Han, X. Bai, D. Gao, J. T. Thong, B. Li, and C. W. Qiu, Experimental demonstration of a bilayer thermal cloak, Phys. Rev. Lett. 112, 054302 (2014).
[54] S. R. Sklan, X. Bai, B. Li, and X. Zhang, Detecting thermal cloaks via transient effects, Sci. Rep. 6, 32915 (2016).
[55] J.-P. Huang, Theoretical thermotics: transformation thermotics and extended theories for thermal metamaterials (Springer Nature Singapore, 2020).
[56] W.-S. Yeung and R.-J. Yang, Introduction to thermal cloaking: theory and analysis in conduction and convection (Springer Singapore, 2022).
[57] T. Chen and J.-H. Lin, Novel connections and physical implications of thermal metamaterials with imperfect interfaces, Sci. Rep. 12, 2734 (2022).
[58] T. Chen and J.-H. Lin, Exact thermal invisibility for spherical cloaks with imperfect interfaces, AIP Adv. 12, 075214 (2022).
[59] C. Monachon, L. Weber, and C. Dames, Thermal Boundary Conductance: A Materials Science Perspective, Annu. Rev. Mater. Res. 46, 433 (2016).
[60] D. W. Hahn and M. N. Özışık, Heat conduction (Wiley, 2012), 3 edn.
[61] Heat transfer, (Wikipedia, The Free Encyclopedia) https://en.wikipedia.org/wiki/Heat_transfer.
[62] Transfer of heat, (Wikiversity) https://en.wikiversity.org/wiki/Transfer_of_heat.
[63] J. B. J. Fourier and G. Darboux, Théorie analytique de la chaleur (Didot Paris, 1822).
[64] Y. A. Urzhumov and D. R. Smith, Fluid flow control with transformation media, Phys. Rev. Lett. 107, 074501 (2011).
[65] P. T. Bowen, D. R. Smith, and Y. A. Urzhumov, Wake control with permeable multilayer structures: The spherical symmetry case, Phys. Rev. E 92, 063030 (2015).
[66] G. Dai and J. Huang, A transient regime for transforming thermal convection: Cloaking, concentrating, and rotating creeping flow and heat flux, J. Appl. Phys. 124, 235103 (2018).
[67] L. Xu, J. Wang, G. Dai, S. Yang, F. Yang, G. Wang, and J. Huang, Geometric phase, effective conductivity enhancement, and invisibility cloak in thermal convection-conduction, Int. J. Heat Mass Transfer 165, 120659 (2021).
[68] J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Coherent emission of light by thermal sources, Nature 416, 61 (2002).
[69] C. M. Cornelius and J. P. Dowling, Modification of Planck blackbody radiation by photonic band-gap structures, Phys. Rev. A 59, 4736 (1999).
[70] S.-Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, Enhancement and suppression of thermal emission by a three-dimensional photonic crystal, Phys. Rev. B 62, R2243 (2000).
[71] N. Dahan, A. Niv, G. Biener, V. Kleiner, and E. Hasman, Space-variant polarization manipulation of a thermal emission by a SiO2 subwavelength grating supporting surface phonon-polaritons, Appl. Phys. Lett. 86, 191102 (2005).
[72] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies, Science 314, 977 (2006).
[73] U. Leonhardt, Optical conformal mapping, Science 312, 1777 (2006).
[74] H. Chen and C. T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91, 183518 (2007).
[75] A. N. Norris, Acoustic cloaking theory, Proc. R. Soc. Lond. A 464, 2411 (2008).
[76] A. N. Norris and A. L. Shuvalov, Elastic cloaking theory, Wave Motion 48, 525 (2011).
[77] P. Y. Chen, J. Soric, and A. Alu, Invisibility and cloaking based on scattering cancellation, Adv. Mater. 24, OP281 (2012).
[78] Y. Li, W. Li, T. Han, X. Zheng, J. Li, B. Li, S. Fan, and C.-W. Qiu, Transforming heat transfer with thermal metamaterials and devices, Nat. Rev. Mater. 6, 488 (2021).
[79] 翁崇寧, Transformation media for physical and elastic phenomena and their equivalent effects, 土木工程研究所博士論文, 國立成功大學, Tainan, 2010.
[80] G. W. Milton and S. K. Serkov, Neutral coated inclusions in conductivity and anti–plane elasticity, Proc. R. Soc. Lond. A 457, 1973 (2001).
[81] Z. Hashin, The elastic moduli of heterogeneous materials, J. Appl. Mech. 29, 143 (1962).
[82] R. M. Christensen and K. H. Lo, Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27, 315 (1979).
[83] Y. Huang, K. X. Hu, X. Wei, and A. Chandra, A generalized self-consistent mechanics method for composite materials with multiphase inclusions, J. Mech. Phys. Solids 42, 491 (1994).
[84] Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials, J. Appl. Phys. 33, 3125 (1962).
[85] M. D. Guild, A. Alu, and M. R. Haberman, Cancellation of acoustic scattering from an elastic sphere, J. Acoust. Soc. Am. 129, 1355 (2011).
[86] R. Fleury and A. Alù, Quantum cloaking based on scattering cancellation, Phys. Rev. B 87, 045423 (2013).
[87] M. Farhat, P. Y. Chen, S. Guenneau, H. Bagci, K. N. Salama, and A. Alù, Cloaking through cancellation of diffusive wave scattering, Proc. R. Soc. Lond. A 472, 20160276 (2016).
[88] H. Nassar, B. Yousefzadeh, R. Fleury, M. Ruzzene, A. Alù, C. Daraio, A. N. Norris, G. Huang, and M. R. Haberman, Nonreciprocity in acoustic and elastic materials, Nat. Rev. Mater. 5, 667 (2020).
[89] R. Hu, X. Wei, J. Hu, and X. Luo, Local heating realization by reverse thermal cloak, Sci. Rep. 4, 3600 (2014).
[90] S. Zhou, R. Hu, and X. Luo, Thermal illusion with twinborn-like heat signatures, Int. J. Heat Mass Transfer 127, 607 (2018).
[91] W. Sha, M. Xiao, J. Zhang, X. Ren, Z. Zhu, Y. Zhang, G. Xu, H. Li, X. Liu, X. Chen,
L. Gao, C.W. Qiu, R. Hu, Robustly printable freeform thermal metamaterials, Nat. Commun. 12, 7228 (2021).
[92] U. Leonhardt, Applied physics: cloaking of heat, Nature 498, 440 (2013).
[93] A. Alù, Thermal cloaks get hot, Physics 7, 12 (2014).
[94] R. Hu, W. Xi, Y. Liu, K. Tang, J. Song, X. Luo, J. Wu, and C.-W. Qiu, Thermal camouflaging metamaterials, Mater. Today 45, 120 (2021).
[95] S. Torquato and M. D. Rintoul, Effect of the interface on the properties of composite media, Phys. Rev. Lett. 75, 4067 (1995).
[96] R. Lipton and B. Vernescu, Composites with imperfect interface, Proc. R. Soc. Lond. A 452, 329 (1996).
[97] C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys. 81, 6692 (1997).
[98] K. Ren, X. Liu, S. Chen, Y. Cheng, W. Tang, and G. Zhang, Remarkable reduction of interfacial thermal resistance in nanophononic heterostructures, Adv. Funct. Mater. 30, 2004003 (2020).
[99] T. Chen and R. Lipton, Bounds for the torsional rigidity of shafts with arbitrary cross-sections containing cylindrically orthotropic fibres or coated fibres, Proc. R. Soc. Lond. A 463, 3291 (2007).
[100] R. Lipton, Reciprocal relations, bounds, and size effects for composites with highly conducting Interface, SIAM J. Appl. Math. 57, 347 (1997).
[101] R. Lipton, Variational methods, bounds, and size effects for composites with highly conducting interface, J. Mech. Phys. Solids 45, 361 (1997).
[102] H. Cheng and S. Torquato, Effective conductivity of dispersions of spheres with a superconducting interface, Proc. R. Soc. Lond. A 453, 1331 (1997).
[103] R. J. Warzoha, L. Boteler, A. N. Smith, E. Getto, and B. F. Donovan, Steady-state measurements of thermal transport across highly conductive interfaces, Int. J. Heat Mass Transfer 130, 874 (2019).
[104] T. Y. Chen, M. S. Chiu, and C. N. Weng, Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids, J. Appl. Phys. 100, 074308 (2006).
[105] Z. Hashin and B. W. Rosen, The Elastic Moduli of Fiber-Reinforced Materials, J. Appl. Mech. 31, 223 (1964).
[106] J. B. Keller, A theorem on the conductivity of a composite medium, J. Math. Phys. 5, 548 (1964).
[107] A. M. Dykhne, Conductivity of a two-dimensional system, Sov. Phys. JEPT 32, 63 (1971).
[108] K. S. Mendelson, Effective conductivity of two−phase material with cylindrical phase boundaries, J. Appl. Phys. 46, 917 (1975).
[109] T. Chen, Thermal conduction of a circular inclusion with variable interface parameter, Int. J. Solids Struct. 38, 3081 (2001).
[110] L. J. Xu, S. Yang, and J. P. Huang, Effectively infinite thermal conductivity and zero-index thermal cloak, EPL (Europhysics Letters) 131, 24002 (2020).
[111] S. Yang, J. Wang, G. Dai, F. Yang, and J. Huang, Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application, Phys. Rep. 908, 1 (2021).
[112] D. Liu, R. Xie, N. Yang, B. Li, and J. T. L. Thong, Profiling nanowire thermal resistance with a spatial resolution of nanometers, Nano Lett. 14, 806 (2014).
[113] T. Y. Chen, Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles, Mech. Mater. 14, 257 (1993).
[114] D. Torrent and J. Sánchez-Dehesa, Acoustic cloaking in two dimensions: a feasible approach, New J. Phys. 10, 063015 (2008).
[115] J. C.-E. Sten, DC fields and analytical image solutions for a radially anisotropic spherical conductor, IEEE Trans. Diel. Elec. Insul. 2, 360 (1995).
[116] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory (Springer New York, NY, 1998), Vol. 93, Applied Mathematical Sciences.
[117] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical methods for physicists (Elsevier, 2013), 7 edn.
[118] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar Cross Section (Artech House, Boston, 1992).
[119] 紀佩瑩, 不完美介面效應在靜態與時諧之熱屏蔽裝置的應用, 土木工程研究所, 國立成功大學碩士論文, 臺南市, 2016.
[120] Table of specific heat capacities, (Wikipedia, The Free Encyclopedia) https://en.wikipedia.org/w/index.php?title=Table_of_specific_heat_capacities&oldid=1096187400 (2022).
[121] List of thermal conductivities, (Wikipedia, The Free Encyclopedia) https://en.wikipedia.org/wiki/List_of_thermal_conductivities.
[122] Top 10 thermally conductive materials, (Thermtest) https://thermtest.com/thermal-resources/top-10-resources/top-10-thermally-conductive-materials.
[123] T. C. Mokhena, M. J. Mochane, J. S. Sefadi, S. V. Motloung, and D. M. Andala, in Thermal conductivity of graphite-based polymer composites, edited by A. Shahzad (techOpen, 2018).
[124] K. P. Vemuri and P. R. Bandaru, Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials, Appl. Phys. Lett. 103, 133111 (2013).
[125] F. Chen and D. Y. Lei, Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials, Sci. Rep. 5, 11552 (2015).