簡易檢索 / 詳目顯示

研究生: 龔祐民
Kung, Yu-Min
論文名稱: 以鉛修飾金屬有機骨架來增進鈣鈦礦光伏電池的效率
Enhanced Photovoltaic Performance of Perovskite Solar Cells by Lead-modified Metal-Organic Frameworks
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 鈣鈦礦太陽能電池金屬有機骨架溶劑熱沉積法後修飾金屬有機骨架
外文關鍵詞: Perovskite solar cell, Metal-organic framework, Solvothermal deposition method, Postsynthetic modification Metal Organic framework
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部份,第一部份為鈣鈦礦電池基本製程的優化,包括了鈣鈦礦的組成,旋轉塗佈時的優化以及蒸鍍金屬的種類與厚度,以得到高效穩定的基本製程。第二部分為利用金屬有機骨架來增進鈣鈦礦光伏電池的效率。
    第一部份的電池優化,首先測試不同鈣鈦礦的組成與濃度,從XRD及太陽光模擬器分析發現1.4M MAPbI3具有最佳的結晶性及效率。再來對旋轉塗佈時的轉速以及反溶劑的量進行最佳化實驗,結果為4000 rpm時滴入500μl的乙醚效果最好。最後,發現蒸鍍60 nm銀會較高的F.F.及Jsc。故至此得到基本製程的參數,可以穩定做出17%左右的鈣鈦礦太陽能電池。
    在第二部份,應用了金屬有機骨架(MOF)作為鈣鈦礦層的添加劑,以MOF多孔支架結構來提升鈣鈦礦的結晶性並減少內部缺陷。本實驗使用Zr-MOF中的UiO-66作為基礎,並以溶劑熱沉積法(SIM)後修飾鉛於其缺陷位置,使其成為UiO-66-Pb。首先、利用MOF粉末添加可使元件開路電壓及填充因子大幅上升,在最佳添加量10 vol %下,UiO-66及UiO-66-Pb的效率分別上升到17.45%和18.15%。在改變MOF合成溫度以控制後修鉛的數量時,發現55°C下合成的UiO-66-Pb其表現最好,並以感應耦合電漿放射光譜儀 (ICP-OES)表明以合成溫度55°C下每個Zr node上接的鉛數量最多,顯示MOF上鉛的數量將影響其提升的幅度。最後以XRD顯示鈣鈦礦在具有添加MOF下結晶性有所提高,並以螢光光譜(PL)與時間解析螢光光譜(TRPL)證明修飾後的鈣鈦礦內部非輻射複合減少,故效率有所提升。

    This study is divided into two parts. The first part is the optimization of the basic process of perovskite cells. The second part is using the metal organic frameworks to improve the efficiency of perovskite solar cells.
    In the first part of cell optimization, we first try the different composition and concentration of perovskites. From XRD and solar simulator analysis, it was found that 1.4M MAPbI3 had the best crystallinity and efficiency. Then, the optimization experiment was carried out on the rotation speed of the spin coating and the amount of the anti-solvent. The result was that 500 μl of ether was dripped at 4000 rpm for the best effect. Finally, it was found that vapor deposition of 60 nm silver resulted in higher F.F. and Jsc. Therefore, the parameters of the basic process have been obtained, and a perovskite solar cell efficiency can reach about 17%.
    In the second part, metal-organic frameworks (MOFs) are used as the additives for perovskite layers, and the porous scaffolds of MOFs can enhance the crystallinity of perovskites and reduce its defects. In this experiment, UiO-66 was used at first, and then we try to modify lead at its defect part by solvothermal deposition (SIM), making it UiO-66-Pb.
    The results shows that the MOF additive can greatly increase the Voc and F.F. of the cell. Under the optimal addition of 10 vol%, the efficiencies of UiO-66 and UiO-66-Pb rose to 17.45% and 18.15%, respectively. When the synthesis temperature of MOF was varied to control the amount of post-modified lead, the best performance was found for UiO-66-Pb synthesized at 55°C. ICP-OES showed that the amount of lead attached to each Zr node was the highest at the synthesis temperature of 55°C, indicating that the amount of lead on the MOF would affect the magnitude of the enhancement. Finally, XRD shows that the crystallinity of Perovskite is improved with the addition of MOF, and fluorescence spectroscopy (PL) and time-resolved fluorescence spectroscopy (TRPL) demonstrate that the efficiency of the modified Perovskite is improved due to the reduction of internal non-radiative complexation.

    摘要 I Extended abstract II 目錄 XX 表目錄 XXIV 圖目錄 XXV 第一章 緒論 1 1-1 前言 1 1-2 研究目的與動機 3 第二章 實驗原理與文獻回顧 4 2-1 鈣鈦礦太陽能電池的發現和歷史 4 2-2 鈣鈦礦太陽能電池之基本結構、工作原理和重要進展 10 2-2-1鈣鈦礦的半導體性能 10 2-2-2 鈣鈦礦太陽能電池的工作原理 14 2-2-3 主要進展里程碑 17 2-3 鈣鈦礦太陽能電池的結構 20 2-3-1 導電基板 20 2-3-2 電子傳輸層 (ETL) 21 2-3-3 鈣鈦礦的組成工程 22 2-3-3-1 A位陽離子混合物 24 2-3-3-2 X位陰離子混合物 28 2-4 金屬有機骨架 32 2-4-1金屬有機骨架介紹 32 2-4-2後修飾金屬有機骨架 34 2-4-3金屬有機骨架於鈣鈦礦太陽能電池的應用 36 2-4-3-1 MOFs 作為界面修飾劑 38 2-4-3-2 MOFs 作為電荷傳輸層 42 2-4-3-3 鈣鈦礦/MOF異質結 46 第三章 實驗器材與步驟 51 3-1 實驗藥品與材料 51 3-3 實驗流程及實驗原理 55 3-3-1 金屬有機骨架MOFs的合成 55 3-3-2 Solventhermal-doposition in MOFs (SIM) 56 3-3-3鈣鈦礦太陽能電池製備過程 58 3-3-3-1 基板處理 58 3-3-3-2 電子傳輸層(Electron transfer layer, ETL) 59 3-3-3-3 鈣鈦礦層 60 3-3-3-4 電動傳輸層(Hole transporting layer, HTL) 61 3-3-3-5 電極Cathode 62 3-4 MOFs粉末分析(MOFs Powder analysis) 儀器 63 3-4-1高解析掃描式電子顯微鏡 (SEM) 63 3-4-2 X-ray 繞射儀 (X-ray Diffraction , XRD) 64 3-4-3 表面積及奈米孔徑分析儀 (ASAP2020) 65 3-4-4 X射線光電子光譜(X-ray Photoelectron Sprectroscopy, XPS) 66 3-4-5 電感耦合電漿體原子發射光譜(ICP-OES) 67 3-5鈣鈦礦太陽能電池元件分析 68 3-5-1 太陽光模擬器 68 3-5-2 入射光子轉換效率量測系統 72 3-5-3 螢光光譜儀(Photoluminescence) & 時間解析螢光光譜儀(Time-resolved photoluminescence) 74 第四章 結果與討論 75 4-1 鈣鈦礦太陽能電池基本參數調整 75 4-1-1 鈣鈦礦的組成與濃度 75 4-1-2 鈣鈦礦層的製程參數調整: 轉速與反溶劑量 78 4-1-3 蒸鍍不同金屬種類與厚度的影響 83 4-2 UiO-66 粉末材料鑑定 85 4-2-1 掃描式電子顯微鏡圖(Scanning Electron Microscopic images, SEM images) 85 4-2-2 粉末X射線繞射圖譜 (Powder X-ray Diffraction patterns) 88 4-2-3 氮氣吸脫附曲線以及孔徑分布(Nitrogen adsorption-desorption isotherm and Density Functional Theory (DFT) pore size distribution) 89 4-3 鉛後修飾UiO-66-Pb粉末材料鑑定 91 4-3-1 掃描式電子顯微鏡圖 (Scanning Electron Microscope images, SEM images) 91 4-3-2粉末X射線繞射圖譜 (Power X-ray diffraction patterns, PXRD patterns) 93 4-3-3 氮氣吸脫附曲線以及孔徑分布(Nitrogen adsorption-desorption isotherm and Density Functional Theory (DFT) pore size distribution) 94 4-4 MOF粉末應用在鈣鈦礦太陽能電池中 95 4-4-1 不同MOF添加量的影響 95 4-4-1-1 不同UiO-66添加量的影響 95 4-4-1-2 不同UiO-66-Pb添加量的影響 97 4-4-2 不同合成溫度下合成的MOF粉末作為添加劑的影響 102 4-4-2-1不同合成溫度的UiO-66作為添加劑的影響 102 4-4-2-2同合成溫度的UiO-66-Pb作為添加劑的影響 104 第五章 結論與建議 110 5-1 結論 110 5-2 未來工作與建議 112 第六章 參考文獻 113

    [1] "<Advanced Functional Materials - 2015 - Tiwari - Organometal Halide Perovskites for Photovoltaic Applications.pdf>",
    [2] Kim, H.-S., Im, S. H. and Park, N.-G. "Organolead Halide Perovskite: New Horizons in Solar Cell Research", The Journal of Physical Chemistry C 118, 5615-5625, 2014.
    [3] Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells", Journal of the American Chemical Society 131, 6050-6051, 2009.
    [4] Im, J. H., Lee, C. R., Lee, J. W., Park, S. W. and Park, N. G. "6.5% efficient perovskite quantum-dot-sensitized solar cell", Nanoscale 3, 4088-4093, 2011.
    [5] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., Moon, S. J., Humphry-Baker, R., Yum, J. H., Moser, J. E., Gratzel, M. and Park, N. G. "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%", Sci Rep 2, 591, 2012.
    [6] Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. and Snaith, H. J. "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", Science 338, 643-647, 2012.
    [7] Stranks Samuel, D., Eperon Giles, E., Grancini, G., Menelaou, C., Alcocer Marcelo, J. P., Leijtens, T., Herz Laura, M., Petrozza, A. and Snaith Henry, J. "Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber", Science 342, 341-344, 2013.
    [8] Dualeh, A., Tétreault, N., Moehl, T., Gao, P., Nazeeruddin, M. K. and Grätzel, M. "Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid-State Solar Cells", Advanced Functional Materials 24, 3250-3258, 2014.
    [9] Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. and Gratzel, M. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells", Nature 499, 316-319, 2013.
    [10] Suarez, B., Gonzalez-Pedro, V., Ripolles, T. S., Sanchez, R. S., Otero, L. and Mora-Sero, I. "Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells", The Journal of Physical Chemistry Letters 5, 1628-1635, 2014.
    [11] Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M. and Snaith, H. J. "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells", Energy & Environmental Science 7, 982-988, 2014.
    [12] Miyano, K., Tripathi, N., Yanagida, M. and Shirai, Y. "Lead Halide Perovskite Photovoltaic as a Model p–i–n Diode", Accounts of Chemical Research 49, 303-310, 2016.
    [13] Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L. and Huang, J. "Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals", Science 347, 967-970, 2015.
    [14] Miyasaka, T. "Lead Halide Perovskites in Thin Film Photovoltaics: Background and Perspectives", Bulletin of the Chemical Society of Japan 91, 1058-1068, 2018.
    [15] Brivio, F., Butler, K. T., Walsh, A. and van Schilfgaarde, M. "Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers", Physical Review B 89, 155204, 2014.
    [16] Green, M. A., Ho-Baillie, A. and Snaith, H. J. "The emergence of perovskite solar cells", Nature Photonics 8, 506-514, 2014.
    [17] Yin, W.-J., Shi, T. and Yan, Y. "Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory", The Journal of Physical Chemistry C 119, 5253-5264, 2015.
    [18] Liu, Z., Krückemeier, L., Krogmeier, B., Klingebiel, B., Márquez, J. A., Levcenko, S., Öz, S., Mathur, S., Rau, U., Unold, T. and Kirchartz, T. "Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells", ACS Energy Letters 4, 110-117, 2019.
    [19] Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P. A., Mohammed, O. F., Sargent, E. H. and Bakr, O. M. "Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals", Science 347, 519-522, 2015.
    [20] Stranks, S. D., Burlakov, V. M., Leijtens, T., Ball, J. M., Goriely, A. and Snaith, H. J. "Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States", Physical Review Applied 2, 034007, 2014.
    [21] Miyasaka, T. "Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices", Chemistry Letters 44, 720-729, 2015.
    [22] Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S. and Seok, S. I. "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells", Nature Materials 13, 897-903, 2014; Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.-B. and Spiccia, L. "A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells", Angewandte Chemie International Edition 53, 9898-9903, 2014.
    [23] Liu, J., Gao, C., He, X., Ye, Q., Ouyang, L., Zhuang, D., Liao, C., Mei, J. and Lau, W. "Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell", ACS Applied Materials & Interfaces 7, 24008-24015, 2015.
    [24] Mabrouk, S., Bahrami, B., Gurung, A., Reza, K. M., Adhikari, N., Dubey, A., Pathak, R., Yang, S. and Qiao, Q. "Higher efficiency perovskite solar cells using additives of LiI, LiTFSI and BMImI in the PbI2 precursor", Sustainable Energy & Fuels 1, 2162-2171, 2017.
    [25] Richardson, G., O'Kane, S. E. J., Niemann, R. G., Peltola, T. A., Foster, J. M., Cameron, P. J. and Walker, A. B. "Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells?", Energy & Environmental Science 9, 1476-1485, 2016; Zhang, Y., Liu, M., Eperon, G. E., Leijtens, T. C., McMeekin, D., Saliba, M., Zhang, W., de Bastiani, M., Petrozza, A., Herz, L. M., Johnston, M. B., Lin, H. and Snaith, H. J. "Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells", Materials Horizons 2, 315-322, 2015.
    [26] Li, C., Guerrero, A., Zhong, Y. and Huettner, S. "Origins and mechanisms of hysteresis in organometal halide perovskites", Journal of Physics: Condensed Matter 29, 193001, 2017; Song, D. H., Jang, M. H., Lee, M. H., Heo, J. H., Park, J. K., Sung, S.-J., Kim, D.-H., Hong, K.-H. and Im, S. H. "A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells", Journal of Physics D: Applied Physics 49, 473001, 2016.
    [27] Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. and Im, S. H. "Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency", Energy & Environmental Science 8, 1602-1608, 2015.
    [28] Yoon, H., Kang, S. M., Lee, J.-K. and Choi, M. "Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency", Energy & Environmental Science 9, 2262-2266, 2016.
    [29] Cai, F., Yang, L., Yan, Y., Zhang, J., Qin, F., Liu, D., Cheng, Y.-B., Zhou, Y. and Wang, T. "Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer", Journal of Materials Chemistry A 5, 9402-9411, 2017.
    [30] Meng, L., You, J., Guo, T. F. and Yang, Y. "Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells", Acc Chem Res 49, 155-165, 2016.
    [31] Kieslich, G., Sun, S. and Cheetham, A. K. "Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog", Chemical Science 5, 4712-4715, 2014.
    [32] Li, C., Lu, X., Ding, W., Feng, L., Gao, Y. and Guo, Z. "Formability of ABX3 (X = F, Cl, Br, I) halide perovskites", Acta Crystallographica Section B 64, 702-707, 2008.
    [33] Hoefler, S. F., Trimmel, G. and Rath, T. "Progress on lead-free metal halide perovskites for photovoltaic applications: a review", Monatshefte für Chemie - Chemical Monthly 148, 795-826, 2017.
    [34] Zhou, Y., Yang, M., Pang, S., Zhu, K. and Padture, N. P. "Exceptional Morphology-Preserving Evolution of Formamidinium Lead Triiodide Perovskite Thin Films via Organic-Cation Displacement", Journal of the American Chemical Society 138, 5535-5538, 2016.
    [35] Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J. and Seok, S. I. "Compositional engineering of perovskite materials for high-performance solar cells", Nature 517, 476-480, 2015.
    [36] Binek, A., Hanusch, F. C., Docampo, P. and Bein, T. "Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide", The Journal of Physical Chemistry Letters 6, 1249-1253, 2015.
    [37] Smecca, E., Numata, Y., Deretzis, I., Pellegrino, G., Boninelli, S., Miyasaka, T., La Magna, A. and Alberti, A. "Stability of solution-processed MAPbI3 and FAPbI3 layers", Physical Chemistry Chemical Physics 18, 13413-13422, 2016.
    [38] Leijtens, T., Bush, K., Cheacharoen, R., Beal, R., Bowring, A. and McGehee, M. D. "Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability", Journal of Materials Chemistry A 5, 11483-11500, 2017.
    [39] Niu, G., Li, W., Li, J., Liang, X. and Wang, L. "Enhancement of thermal stability for perovskite solar cells through cesium doping", RSC Advances 7, 17473-17479, 2017.
    [40] Jue Gong, P. G., Savannah E. Benjamin, P. Gregory Van Patten, Richard D. Schaller, Tao Xu. "Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications", Journal of Energy Chemistry 27, 1017-1039, 2018.
    [41] Li, Z., Yang, M., Park, J.-S., Wei, S.-H., Berry, J. J. and Zhu, K. "Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys", Chemistry of Materials 28, 284-292, 2016.
    [42] Weller, M. T., Weber, O. J., Frost, J. M. and Walsh, A. "Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K", The Journal of Physical Chemistry Letters 6, 3209-3212, 2015.
    [43] Lee, J.-W., Kim, D.-H., Kim, H.-S., Seo, S.-W., Cho, S. M. and Park, N.-G. "Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell", Advanced Energy Materials 5, 1501310, 2015.
    [44] Yi, C., Luo, J., Meloni, S., Boziki, A., Ashari-Astani, N., Grätzel, C., Zakeeruddin, S. M., Röthlisberger, U. and Grätzel, M. "Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells", Energy & Environmental Science 9, 656-662, 2016.
    [45] Kubicki, D. J., Prochowicz, D., Hofstetter, A., Zakeeruddin, S. M., Grätzel, M. and Emsley, L. "Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1–xPbI3 Hybrid Perovskites from Solid-State NMR", Journal of the American Chemical Society 139, 14173-14180, 2017.
    [46] Park, Y. H., Jeong, I., Bae, S., Son, H. J., Lee, P., Lee, J., Lee, C.-H. and Ko, M. J. "Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH2)2PbI3 Perovskite Solar Cells", Advanced Functional Materials 27, 1605988, 2017.
    [47] Xie, F. X., Zhang, D., Su, H., Ren, X., Wong, K. S., Grätzel, M. and Choy, W. C. H. "Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells", ACS Nano 9, 639-646, 2015; Yu, H., Wang, F., Xie, F., Li, W., Chen, J. and Zhao, N. "The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite", Advanced Functional Materials 24, 7102-7108, 2014; Yantara, N., Yanan, F., Shi, C., Dewi, H. A., Boix, P. P., Mhaisalkar, S. G. and Mathews, N. "Unravelling the Effects of Cl Addition in Single Step CH3NH3PbI3 Perovskite Solar Cells", Chemistry of Materials 27, 2309-2314, 2015.
    [48] Heo, J. H., Lee, M. H., Jang, M. H. and Im, S. H. "Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating", Journal of Materials Chemistry A 4, 17636-17642, 2016.
    [49] Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., Zhang, D., Wang, G., Sheng, Y., Chen, Y., Hagfeldt, A., Zhao, Y. and Zhang, X. "Elucidating the role of chlorine in perovskite solar cells", Journal of Materials Chemistry A 5, 7423-7432, 2017.
    [50] Pan, J., Mu, C., Li, Q., Li, W., Ma, D. and Xu, D. "Room-Temperature, Hydrochloride-Assisted, One-Step Deposition for Highly Efficient and Air-Stable Perovskite Solar Cells", Advanced Materials 28, 8309-8314, 2016.
    [51] Chen, Y., Zhao, Y. and Liang, Z. "Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl", Chemistry of Materials 27, 1448-1451, 2015.
    [52] Xie, F. X., Su, H., Mao, J., Wong, K. S. and Choy, W. C. H. "Evolution of Diffusion Length and Trap State Induced by Chloride in Perovskite Solar Cell", The Journal of Physical Chemistry C 120, 21248-21253, 2016.
    [53] Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. and Seok, S. I. "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells", Nano Letters 13, 1764-1769, 2013.
    [54] Yin, W.-J., Yan, Y. and Wei, S.-H. "Anomalous Alloy Properties in Mixed Halide Perovskites", The Journal of Physical Chemistry Letters 5, 3625-3631, 2014.
    [55] Chiang, C.-H., Lin, J.-W. and Wu, C.-G. "One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module", Journal of Materials Chemistry A 4, 13525-13533, 2016.
    [56] Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. and Kim, J. "Reticular synthesis and the design of new materials", Nature 423, 705-714, 2003.
    [57] Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., Snurr, R. Q., Nguyen, S. T., Yazaydın, A. Ö. and Hupp, J. T. "Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?", Journal of the American Chemical Society 134, 15016-15021, 2012.
    [58] Hönicke, I. M., Senkovska, I., Bon, V., Baburin, I. A., Bönisch, N., Raschke, S., Evans, J. D. and Kaskel, S. "Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials", Angewandte Chemie International Edition 57, 13780-13783, 2018.
    [59] Furukawa, H., Cordova, K. E., O'Keeffe, M. and Yaghi, O. M. "The Chemistry and Applications of Metal-Organic Frameworks", Science 341, 974, 2013; Kitagawa, S., Kitaura, R. and Noro, S. "Functional porous coordination polymers", Angew Chem Int Edit 43, 2334-2375, 2004; Ferey, G. "Hybrid porous solids: past, present, future", Chem Soc Rev 37, 191-214, 2008.
    [60] Yaghi, O. M., Li, G. and Li, H. "Selective binding and removal of guests in a microporous metal–organic framework", Nature 378, 703-706, 1995.
    [61] Li, H., Eddaoudi, M., Groy, T. L. and Yaghi, O. M. "Establishing Microporosity in Open Metal−Organic Frameworks:  Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate)", Journal of the American Chemical Society 120, 8571-8572, 1998.
    [62] Burtch, N. C., Jasuja, H. and Walton, K. S. "Water Stability and Adsorption in Metal-Organic Frameworks", Chem Rev 114, 10575-10612, 2014.
    [63] Murray, L. J., Dinca, M. and Long, J. R. "Hydrogen storage in metal-organic frameworks", Chem Soc Rev 38, 1294-1314, 2009; He, Y. B., Zhou, W., Qian, G. D. and Chen, B. L. "Methane storage in metal-organic frameworks", Chem Soc Rev 43, 5657-5678, 2014.
    [64] Chen, Y. Z., Zhang, R., Jiao, L. and Jiang, H. L. "Metal-organic framework-derived porous materials for catalysis", Coordin Chem Rev 362, 1-23, 2018; Majewski, M. B., Peters, A. W., Wasielewski, M. R., Hupp, J. T. and Farha, O. K. "Metal-Organic Frameworks as Platform Materials for Solar Fuels Catalysis", Acs Energy Lett 3, 598-611, 2018.
    [65] Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T. and Hupp, J. T. "Metal-organic framework materials as catalysts", Chem Soc Rev 38, 1450-1459, 2009; Ma, L. Q., Abney, C. and Lin, W. B. "Enantioselective catalysis with homochiral metal-organic frameworks", Chem Soc Rev 38, 1248-1256, 2009.
    [66] Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. and Eddaoudi, M. "A metal-organic framework-based splitter for separating propylene from propane", Science 353, 137-140, 2016; Li, J. R., Sculley, J. and Zhou, H. C. "Metal-Organic Frameworks for Separations", Chem Rev 112, 869-932, 2012.
    [67] Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. and Hupp, J. T. "Metal-Organic Framework Materials as Chemical Sensors", Chem Rev 112, 1105-1125, 2012; Campbell, M. G. and Dinca, M. "Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices", Sensors-Basel 17, 1108, 2017.
    [68] Choi, K. M., Jeong, H. M., Park, J. H., Zhang, Y. B., Kang, J. K. and Yaghi, O. M. "Supercapacitors of Nanocrystalline Metal-Organic Frameworks", Acs Nano 8, 7451-7457, 2014; Salunkhe, R. R., Kaneti, Y. V. and Yamauchi, Y. "Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects", Acs Nano 11, 5293-5308, 2017; Shrivastav, V., Sundriyal, S., Goel, P., Kaur, H., Tuteja, S. K., Vikrant, K., Kim, K. H., Tiwari, U. K. and Deep, A. "Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage", Coordin Chem Rev 393, 48-78, 2019; Cai, Z. X., Wang, Z. L., Kim, J. and Yamauchi, Y. "Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications", Adv Mater 31, 2019.
    [69] Cohen, S. M. "Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks", Chem Rev 112, 970-1000, 2012; Islamoglu, T., Goswami, S., Li, Z. Y., Howarth, A. J., Farha, O. K. and Hupp, J. T. "Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications", Accounts Chem Res 50, 805-813, 2017.
    [70] Evans, J. D., Sumby, C. J. and Doonan, C. J. "Post-synthetic metalation of metal-organic frameworks", Chem Soc Rev 43, 5933-5951, 2014.
    [71] Kuo, C. H., Tang, Y., Chou, L. Y., Sneed, B. T., Brodsky, C. N., Zhao, Z. P. and Tsung, C. K. "Yolk-Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control", J Am Chem Soc 134, 14345-14348, 2012; Linder-Patton, O. M., de Prinse, T. J., Furukawa, S., Bell, S. G., Sumida, K., Doonan, C. J. and Sumby, C. J. "Influence of nanoscale structuralisation on the catalytic performance of ZIF-8: a cautionary surface catalysis study", Crystengcomm 20, 4926-4934, 2018; Kobayashi, H., Mitsuka, Y. and Kitagawa, H. "Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions", Inorg Chem 55, 7301-7310, 2016.
    [72] Howarth, A. J., Liu, Y. Y., Li, P., Li, Z. Y., Wang, T. C., Hupp, J. and Farha, O. K. "Chemical, thermal and mechanical stabilities of metal-organic frameworks", Nat Rev Mater 1, 2016.
    [73] Bai, Y., Dou, Y. B., Xie, L. H., Rutledge, W., Li, J. R. and Zhou, H. C. "Zr-based metal-organic frameworks: design, synthesis, structure, and applications", Chem Soc Rev 45, 2327-2367, 2016.
    [74] Hod, I., Deria, P., Bury, W., Mondloch, J. E., Kung, C. W., So, M., Sampson, M. D., Peters, A. W., Kubiak, C. P., Farha, O. K. and Hupp, J. T. "A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution", Nat Commun 6, 2015; Usov, P. M., Ahrenholtz, S. R., Maza, W. A., Stratakes, B., Epley, C. C., Kessinger, M. C., Zhu, J. and Morris, A. J. "Cooperative electrochemical water oxidation by Zr nodes and Ni-porphyrin linkers of a PCN-224 MOF thin film", J Mater Chem A 4, 16818-16823, 2016; Kung, C. W., Mondloch, J. E., Wang, T. C., Bury, W., Hoffeditz, W., Klahr, B. M., Klet, R. C., Pellin, M. J., Farha, O. K. and Hupp, J. T. "Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation", Acs Appl Mater Inter 7, 28223-28230, 2015.
    [75] Kung, C. W., Audu, C. O., Peters, A. W., Noh, H., Farha, O. K. and Hupp, J. T. "Copper Nanoparticles Installed in Metal-Organic Framework Thin Films are Electrocatalytically Competent for CO2 Reduction", Acs Energy Lett 2, 2394-2401, 2017.
    [76] Hod, I., Sampson, M. D., Deria, P., Kubiak, C. P., Farha, O. K. and Hupp, J. T. "Fe-Porphyrin-Based Metal-Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2", Acs Catal 5, 6302-6309, 2015.
    [77] Kung, C. W., Chang, T. H., Chou, L. Y., Hupp, J. T., Farha, O. K. and Ho, K. C. "Porphyrin-based metal-organic framework thin films for electrochemical nitrite detection", Electrochem Commun 58, 51-56, 2015; Wang, Y., Wang, L., Huang, W., Zhang, T., Hu, X. Y., Perman, J. A. and Ma, S. Q. "A metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection", J Mater Chem A 5, 8385-8393, 2017.
    [78] Kung, C. W., Otake, K., Buru, C. T., Goswami, S., Cui, Y. X., Hupp, J. T., Spokoyny, A. M. and Farha, O. K. "Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests", J Am Chem Soc 140, 3871-3875, 2018.
    [79] Wang, Z. Q., Wang, B. X., Yang, Y., Cui, Y. J., Wang, Z. Y., Chen, B. L. and Qian, G. D. "Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries", Acs Appl Mater Inter 7, 20999-21004, 2015.
    [80] Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. and Kim, K. "A homochiral metal-organic porous material for enantioselective separation and catalysis", Nature 404, 982-986, 2000.
    [81] Cohen, S. "Modifying MOFs: new chemistry, new materials (vol 1, pg 32, 2010)", Chem Sci 1, 776-776, 2010; Tanabe, K. K. and Cohen, S. M. "Postsynthetic modification of metal-organic frameworks-a progress report", Chem Soc Rev 40, 498-519, 2011; Wang, Z. Q. and Cohen, S. M. "Postsynthetic modification of metal-organic frameworks", Chem Soc Rev 38, 1315-1329, 2009.
    [82] Brozek, C. K. and Dinca, M. "Cation exchange at the secondary building units of metal-organic frameworks", Chem Soc Rev 43, 5456-5467, 2014; Deria, P., Mondloch, J. E., Karagiaridi, O., Bury, W., Hupp, J. T. and Farha, O. K. "Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement", Chem Soc Rev 43, 5896-5912, 2014; Kim, M., Cahill, J. F., Fei, H. H., Prather, K. A. and Cohen, S. M. "Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks", J Am Chem Soc 134, 18082-18088, 2012.
    [83] Wang, Z. Q., Tanabe, K. K. and Cohen, S. M. "Tuning Hydrogen Sorption Properties of Metal-Organic Frameworks by Postsynthetic Covalent Modification", Chem-Eur J 16, 212-217, 2010.
    [84] Wu, C. D., Hu, A., Zhang, L. and Lin, W. B. "Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis", J Am Chem Soc 127, 8940-8941, 2005.
    [85] Morris, W., Doonan, C. J., Furukawa, H., Banerjee, R. and Yaghi, O. M. "Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks", J Am Chem Soc 130, 12626-12627, 2008.
    [86] Marshall, R. J. and Forgan, R. S. "Postsynthetic Modification of Zirconium Metal-Organic Frameworks", Eur J Inorg Chem, 4310-4331, 2016.
    [87] Yuan, S., Chen, Y. P., Qin, J. S., Lu, W. G., Wang, X., Zhang, Q., Bosch, M., Liu, T. F., Lian, X. Z. and Zhou, H. C. "Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks", Angew Chem Int Edit 54, 14696-14700, 2015.
    [88] Klet, R. C., Wang, T. C., Fernandez, L. E., Truhlar, D. G., Hupp, J. T. and Farha, O. K. "Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal-Exchange Approach", Chem Mater 28, 1213-1219, 2016.
    [89] Yang, D., Odoh, S. O., Wang, T. C., Farha, O. K., Hupp, J. T., Cramer, C. J., Gagliardi, L. and Gates, B. C. "Metal-Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000-and UiO-66-Supported Iridium Complexes", J Am Chem Soc 137, 7391-7396, 2015.
    [90] Li, Z. Y., Peters, A. W., Platero-Prats, A. E., Liu, J., Kung, C. W., Noh, H., DeStefano, M. R., Schweitzer, N. M., Chapman, K. W., Hupp, J. T. and Farha, O. K. "Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane", J Am Chem Soc 139, 15251-15258, 2017.
    [91] Wang, Z., Shi, Z., Li, T., Chen, Y. and Huang, W. "Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion", Angewandte Chemie International Edition 56, 1190-1212, 2017; Leijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A. and Snaith, H. J. "Stability of Metal Halide Perovskite Solar Cells", Advanced Energy Materials 5, 1500963, 2015.
    [92] Bai, Y., Meng, X. and Yang, S. "Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells", Advanced Energy Materials 8, 1701883, 2018.
    [93] Chueh, C.-C., Chen, C.-I., Su, Y.-A., Konnerth, H., Gu, Y.-J., Kung, C.-W. and Wu, K. C. W. "Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives", Journal of Materials Chemistry A 7, 17079-17095, 2019.
    [94] Vinogradov, A. V., Zaake-Hertling, H., Hey-Hawkins, E., Agafonov, A. V., Seisenbaeva, G. A., Kessler, V. G. and Vinogradov, V. V. "The first depleted heterojunction TiO2–MOF-based solar cell", Chemical Communications 50, 10210-10213, 2014.
    [95] Hou, X., Pan, L., Huang, S., Wei, O.-Y. and Chen, X. "Enhanced Efficiency and stability of Perovskite Solar Cells using Porous Hierarchical TiO2 Nanostructures of Scattered Distribution as Scaffold", Electrochimica Acta 236, 351-358, 2017.
    [96] Shen, D., Pang, A., Li, Y., Dou, J. and Wei, M. "Metal–organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties", Chemical Communications 54, 1253-1256, 2018.
    [97] Lee, C. C., Chen, C. I., Liao, Y. T., Wu, K. C. and Chueh, C. C. "Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zr-MOF Heterojunction Including Bilayer and Hybrid Structures", Adv Sci (Weinh) 6, 1801715, 2019.
    [98] Ryu, U., Jee, S., Park, J.-S., Han, I. K., Lee, J. H., Park, M. and Choi, K. M. "Nanocrystalline Titanium Metal–Organic Frameworks for Highly Efficient and Flexible Perovskite Solar Cells", ACS Nano 12, 4968-4975, 2018.
    [99] Li, M., Xia, D., Yang, Y., Du, X., Dong, G., Jiang, A. and Fan, R. "Doping of [In2(phen)3Cl6]·CH3CN·2H2O Indium-Based Metal–Organic Framework into Hole Transport Layer for Enhancing Perovskite Solar Cell Efficiencies", Advanced Energy Materials 8, 1702052, 2018.
    [100] Chang, T.-H., Kung, C.-W., Chen, H.-W., Huang, T.-Y., Kao, S.-Y., Lu, H.-C., Lee, M.-H., Boopathi, K. M., Chu, C.-W. and Ho, K.-C. "Planar Heterojunction Perovskite Solar Cells Incorporating Metal–Organic Framework Nanocrystals", Advanced Materials 27, 7229-7235, 2015.
    [101] Williams, S. T., Chueh, C.-C. and Jen, A. K. Y. "Navigating Organo-Lead Halide Perovskite Phase Space via Nucleation Kinetics toward a Deeper Understanding of Perovskite Phase Transformations and Structure–Property Relationships", Small 11, 3088-3096, 2015.
    [102] DeStefano, M. R., Islamoglu, T., Garibay, S. J., Hupp, J. T. and Farha, O. K. "Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites", Chemistry of Materials 29, 1357-1361, 2017.
    [103] Trickett, C. A., Gagnon, K. J., Lee, S., Gandara, F., Burgi, H. B. and Yaghi, O. M. "Definitive Molecular Level Characterization of Defects in UiO-66 Crystals", Angew. Chem. Int. Ed. 54, 11162-11167, 2015.
    [104] Wang, Y.-S., Chen, Y.-C., Li, J.-H. and Kung, C.-W. "Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese", Eur. J. Inorg. Chem., 3036-3044, 2019; Wang, Y.-S., Liao, J.-L., Li, Y.-S., Chen, Y.-C., Li, J.-H., Ho, W. H., Chiang, W.-H. and Kung, C.-W. "Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors", ACS Appl. Nano Mater. 3, 1448-1456, 2020.
    [105] Bi, D., Yi, C., Luo, J., Décoppet, J.-D., Zhang, F., Zakeeruddin, Shaik M., Li, X., Hagfeldt, A. and Grätzel, M. "Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%", Nature Energy 1, 16142, 2016.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE