簡易檢索 / 詳目顯示

研究生: 石俊男
Shi, Jun-Nan
論文名稱: 肝癌細胞中琥珀酸脫氫酶乙型的缺失加速腫瘤的惡化
Loss of succinate dehydrogenase B in hepatocellular carcinoma accelerates tumor malignancy
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 87
中文關鍵詞: 琥珀酸脫氫酶乙型肝癌瓦氏效應
外文關鍵詞: succinate dehydrogenase B, HepG2, Warburg effect, SDHB, glycolysis
相關次數: 點閱:179下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1930年代 Otto Heinrich Warburg提出瓦氏效應(Warburg effect)的假設,認為癌細胞可能是因為粒線體的缺陷,造成癌細胞在能量代謝上的轉換,由主要利用氧化磷酸化(oxidative phosphorylation)產生三磷酸腺苷(Adenosine triphosphate, ATP)轉變為利用糖解作用(glycolysis)來生成ATP,做為提供能量的來源。惡性腫瘤也是偏好利用糖解作用,過去發現很多惡性腫瘤有檸檬酸循環(Citric acid cycle)的酵素產生缺失。琥珀酸脫氫酶(Succinate dehydrogenase)有四個次單元,分別為A、B、C與D型,琥珀酸脫氫酶參與檸檬酸循環,並催化琥珀酸(succinate)轉變為延胡索酸(furmarate),此外琥珀酸脫氫酶也參與電子傳遞鏈(electron transport chain),做為電子傳遞鏈第二複合體來傳遞電子。琥珀酸脫氫酶乙型(Succinate dehydrogenase B)近年來的研究被認為是抑癌基因,在副神經節瘤與神經母細胞瘤的病人中,都可以發現琥珀酸脫氫酶乙型的突變。為了研究針對SDHB對肝癌惡性程度的影響,我挑選生長較慢的HepG2與HuH7細胞株做為建立穩定抑制SDHB的對象,在研究七株不同肝癌細胞的SDHB表現量,可以發現HepG2的SDHB表現量最高,而生長最快的SK-Hep1的SDHB表現量是最低。建立穩定抑制SDHB的HepG2與HuH7細胞株,分析他們生長、爬行以及細胞攤開能力,可以看見抑制SDHB會造成細胞生長、爬行以及細胞攤開能力上升,在分析SDH活性則會造成下降,而在酸鹼值的測定也比較偏酸性,抑制SDHB會造成細胞能量代謝偏向糖解作用並且造成細胞的惡性程度上升。我針對生長最快的SK-Hep1去過度表現SDHB,建立過度表現SDHB的SK-Hep1,去分析細胞生長、爬行以及攤開能力,可以看見過度表現SDHB會減緩細胞的生長、爬行以及攤開能力,分析SDH活性則會上升,而在酸鹼值的測定也比較偏鹼性,過度表現SDHB會增強檸檬酸循環並降低有氧糖解作用,進而降低肝癌細胞的惡性。本研究試圖去連接肝癌惡性程度與細胞內性SDHB的表現量高低,目前結果顯示出高表現量SDHB的肝癌細胞具有較低惡性程度,而低表現SDHB的肝癌細胞具有較高惡性程度,SDHB的表現扮演一個重要的角色影響著肝癌細胞的惡性程度。

    In the 1930s, Otto Heinrich Warburg proposed the theory of Warburg effect. He thinks that mitochondria dysfunction would cause change in the cancer cells’ energy metabolism. When the normal cells transform into cancer cells, they would favorite to generate adenosine triphosphate (ATP) by glycolysis rather than oxidative phosphorylation. In research, many malignant tumors favorite glycolysis to generate energy and they also have enzyme dysfunctions in citric acid cycle. Succinate dehydrogenase is four subunits complex (SDHA, SDHB, SDHC, SDHD) and associates to citric acid cycle. The function of succinate dehydrogenase in citric acid cycle is that catalyzes the oxidation of succinate to furmarate. Succinate dehydrogenase also play a role in electron transport chain, serving as complex II to transfer the electron. In recently study, succinate dehydrogenase B is considered as a tumor suppressor, with the findings that the mutation of succinate dehydrogenase B in the patient of paraganglioma and pheochromocytoma. In order to study the tumor malignancy degrees of succinate dehydrogenase B in hepatocellular carcinoma, I choice HepG2 and HuH7 cell lines which are with low rate of tumor cell proliferation to be the stable knock down models. I analysis the endogenous SDHB protein expression in seven different hepatocellular carcinomas and HepG2 is the highest, but SK-Hep1 is the lower than the others. I figure out that knock down SDHB in HepG2 and HuH7 cell line increase the cell proliferation, cell migration and cell spreading. SDHB downregulation in HepG2 and HuH7 cell line decrease the SDH activity and cause the pH value of culture media to become acidic. It shifts the energy metabolism to use glycolysis and accelerates tumor malignancy that knock down SDHB protein expression. I establish a SDHB stable overexpression in SK-Hep1 cell line which is with high rate of tumor cell proliferation. SDHB overexpression in SK-Hep1 cell line arrests the cell proliferation, cell migration and cell spreading. SDHB overexpression in SK-Hep1 cell line increases the SDH activity and cause the pH value of culture media to become basic. SDHB overexpression increases the function of citric acid cycle and decreases glycolysis. This study establish the relationship between hepatocellular carcinoma tumor malignancy and endogenous SDHB protein expression level. The result presents that high SDHB protein expression level with low degree of tumor malignancy and low SDHB protein expression level with high degree of tumor malignancy in hepatocellular carcinoma. SDHB protein expression level plays the important role to affect the degree of tumor malignancy in hepatocellular carcinoma.

    中文摘要 3 ABSTRACT 5 誌謝 7 目錄 8 圖表目錄 10 1-1癌症細胞的瓦氏效應(WARBURG EFFECT) 11 1-2 粒線體功能缺失(MITOCHONDRIA DYSFUNCTION) 12 1-3 琥珀酸脫氫酶(SUCCINATE DEHYDROGENASE,SDH) 13 1-4 琥珀酸脫氫酶對癌症的影響 14 1-5 肝癌介紹(HEPATOCELLULAR CARCINOMA, HCC) 15 1-6 研究動機 16 第二章 實驗材料及方法 17 2-1 實驗材料 17 2-2 實驗方法 30 第三章 實驗結果 47 3-1 分析各種不同的肝癌細胞株之琥珀酸脫氫酶乙型(SDHB)之內生性蛋白表現 47 3-2 利用核酸干擾(RNAI)技術去建立穩定抑制SDHB之HEPG2細胞株 47 3-3 觀察穩定抑制SDHB蛋白表現之HEPG2對能量代謝相關蛋白的影響並觀察其細胞形態 47 3-4 分析穩定抑制SDHB蛋白表現對於HEPG2之SDH活性的影響 48 3-5 分析穩定抑制SDHB蛋白表現對於HEPG2細胞生長能力是否造成影響 48 3-6 分析穩定抑制SDHB蛋白表現對於HEPG2細胞爬行是否造成影響 48 3-7 分析穩定抑制SDHB蛋白表現對於HEPG2細胞攤開能力是否造成影響 49 3-8 分析穩定抑制SDHB蛋白表現對於HEPG2粒線體膜電位的影響 49 3-9 分析穩定抑制SDHB蛋白表現對於HEPG2細胞週期測定的影響 49 3-10 分析穩定抑制SDHB蛋白表現對於HEPG2糖解作用代謝的影響 50 3-11 利用核酸干擾(RNAI)技術去建立穩定抑制琥珀酸脫氫酶乙型(SDHB)之HUH7細胞株 50 3-12 觀察穩定抑制SDHB蛋白表現之HUH7對能量代謝相關蛋白的影響並觀察其細胞形態 51 3-13 觀察穩定抑制SDHB蛋白表現對於HUH7之SDH活性的影響 51 3-14 分析穩定抑制SDHB蛋白表現對於HUH7細胞生長能力是否造成影響 51 3-15 分析穩定抑制SDHB蛋白表現對於HUH7的細胞爬行是否造成影響 52 3-16 分析穩定抑制SDHB蛋白表現對於HUH7細胞攤開能力是否造成影響 52 3-17 分析穩定抑制SDHB蛋白表現對於HUH7的糖解作用代謝的影響 52 3-18 建立穩定過度表現琥珀酸脫氫酶乙型(SDHB)之SK-HEP1細胞株 53 3-19 建立穩定過度表現琥珀酸脫氫酶乙型(SDHB)在SK-HEP1對能量代謝相關蛋白的影響並觀察其細胞形態 53 3-20 測定過度表現SDHB蛋白表現對於SK-HEP1之SDH活性的影響 54 3-21 觀察穩定過度表現SDHB蛋白表現對於SK-HEP1細胞生長能力是否造成影響 54 3-22 觀察穩定過度表現SDHB蛋白表現對於SK-HEP1細胞爬行是否造成影響 54 3-23 觀察穩定過度表現SDHB蛋白表現對於SK-HEP1細胞攤開能力是否造成影響 54 3-24 觀察穩定過度表現SDHB蛋白表現對於SK-HEP1糖解作用代謝的影響 55 第四章 結果討論 56 第五章 參考文獻 60 作者簡介 87

    Allen, R.E., and Boxhorn, L.K. (1989). Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor beta, insulin like growth factor I, and fibroblast growth factor. Journal of cellular physiology 138, 311-315.
    Astuti, D., Latif, F., Dallol, A., Dahia, P.L.M., Douglas, F., George, E., Skoldberg, F., Husebye, E.S., Eng, C., and Maher, E.R. (2001). Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. The American Journal of Human Genetics 69, 49-54.
    Bourgeron, T., Rustin, P., Chretien, D., Birch-Machin, M., Bourgeois, M., Viegas-Pequignot, E., Munnich, A., and Rotig, A. (1995). Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature genetics 11, 144-149.
    Boyer, P.D. (1997). The ATP synthase--a splendid molecular machine. Annual Review of Biochemistry 66, 717.
    Boyer, P.D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E. (1977). Oxidative phosphorylation and photophosphorylation. Annual Review of Biochemistry 46, 955-966.
    Brouwers, F.M., Eisenhofer, G., Tao, J.J., Kant, J.A., Adams, K.T., Linehan, W.M., and Pacak, K. (2006). High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing. Journal of Clinical Endocrinology & Metabolism 91, 4505.
    Carew, J.S., and Huang, P. (2002). Mitochondrial defects in cancer. Molecular cancer 1, 9.
    Carmeliet, P., Dor, Y., Herbert, J.M., Fukumura, D., Brusselmans, K., Dewerchln, M., Neeman, M., Bono, F., Abramovitch, R., and Maxwells, P. (1998). Role of HIF-1 in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. NATURE-LONDON-, 485-490.
    Cecchini, G., Schroder, I., Gunsalus, R.P., and Maklashina, E. (2002). Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1553, 140-157.
    Chan, D.C. (2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241-1252.
    Chance, B., and Williams, G. (1956). The respiratory chain and oxidative phosphorylation.
    DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008a). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7, 11-20.
    DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008b). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell metabolism 7, 11-20.
    El-Serag, H.B., and Mason, A.C. (1999). Rising incidence of hepatocellular carcinoma in the United States. The New England journal of medicine 340, 745-750.
    Flier, J.S., Mueckler, M.M., Usher, P., and Lodish, H.F. (1987). Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492.
    Fontham, E.T.H. (2008). Cancer Epidemiology and Prevention. American Journal of Epidemiology 168, 469.
    Gatenby, R.A., and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nature reviews cancer 4, 891-899.
    Gimenez-Roqueplo, A.P., Favier, J., Rustin, P., Rieubland, C., Crespin, M., Nau, V., Van Kien, P.K., Corvol, P., Plouin, P.F., and Jeunemaitre, X. (2003). Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer research 63, 5615.
    Gottlieb, E., and Tomlinson, I.P.M. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature reviews cancer 5, 857-866.
    GUPPY, M., GREINER, E., and BRAND, K. (1993). The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. European Journal of Biochemistry 212, 95-99.
    Guzy, R.D., Sharma, B., Bell, E., Chandel, N.S., and Schumacker, P.T. (2008). Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Molecular and cellular biology 28, 718.
    Ishii, N., Fujii, M., Hartman, P.S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D., and Suzuki, K. (1998). A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394, 694-697.
    Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA Cancer J Clin 61, 69-90.
    Kearney, E.B. (1957). Studies on succinic dehydrogenase. Journal of Biological Chemistry 229, 363.
    Kim, J., and Dang, C.V. (2006). Cancer's molecular sweet tooth and the Warburg effect. Cancer research 66, 8927.
    King, A., Selak, M., and Gottlieb, E. (2006). Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675-4682.
    Levenson, R., Macara, I.G., Smith, R.L., Cantley, L., and Housman, D. (1982). Role of mitochondrial membrane potential in the regulation of murine erythroleukemia cell differentiation. Cell 28, 855-863.
    McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a powerhouse. Current biology 16, R551-R560.
    Ming, L., Thorgeirsson, S.S., Gail, M.H., Lu, P., Harris, C.C., Wang, N., Shao, Y., Wu, Z., Liu, G., and Wang, X. (2002). Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology 36, 1214-1220.
    Modica-Napolitano, J.S., and Singh, K.K. (2004). Mitochondrial dysfunction in cancer. Mitochondrion 4, 755-762.
    Nishikawa, M., Nishiguchi, S., Shiomi, S., Tamori, A., Koh, N., Takeda, T., Kubo, S., Hirohashi, K., Kinoshita, H., and Sato, E. (2001). Somatic mutation of mitochondrial DNA in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer research 61, 1843.
    Oyedotun, K.S., and Lemire, B.D. (2004). The quaternary structure of the Saccharomyces cerevisiae succinate dehydrogenase. Journal of Biological Chemistry 279, 9424.
    Pelicano, H., Martin, D., Xu, R., and Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646.
    Pfeiffer, T., Schuster, S., and Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504.
    Pollard, P., Briere, J., Alam, N., Barwell, J., Barclay, E., Wortham, N., Hunt, T., Mitchell, M., Olpin, S., and Moat, S.J. (2005a). Accumulation of Krebs cycle intermediates and over-expression of HIF1£ in tumours which result from germline FH and SDH mutations. Human molecular genetics 14, 2231.
    Pollard, P.J., Briere, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Mitchell, M., Olpin, S., Moat, S.J., et al. (2005b). Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14, 2231-2239.
    Romano, A., and Conway, T. (1996). Evolution of carbohydrate metabolic pathways. Research in microbiology 147, 448-455.
    Scheers, I., Bachy, V., Stephenne, X., and Sokal, E.M. (2005). Risk of hepatocellular carcinoma in liver mitochondrial respiratory chain disorders. The Journal of pediatrics 146, 414-417.
    Schulz, T.J., Thierbach, R., Voigt, A., Drewes, G., Mietzner, B., Steinberg, P., Pfeiffer, A.F.H., and Ristow, M. (2006). Induction of oxidative metabolism by mitochondrial frataxin Inhibits cancer growth. Journal of Biological Chemistry 281, 977.
    Semenza, G.L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Critical reviews in biochemistry and molecular biology 35, 71-103.
    Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., and Loeffler, M. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446.
    Suzuki, Y.J., Forman, H.J., and Sevanian, A. (1997). Oxidants as stimulators of signal transduction. Free Radical Biology and Medicine 22, 269-285.
    Thierbach, R., Schulz, T.J., Isken, F., Voigt, A., Mietzner, B., Drewes, G., von Kleist-Retzow, J.C., Wiesner, R.J., Magnuson, M.A., and Puccio, H. (2005). Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Human molecular genetics 14, 3857.
    Trounce, I.A., Kim, Y.L., Jun, A.S., and Wallace, D.C. (1996). Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods in enzymology 264, 484.
    Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.
    Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314.
    Yankovskaya, V., Horsefield, R., Tornroth, S., Luna-Chavez, C., Miyoshi, H., Leger, C., Byrne, B., Cecchini, G., and Iwata, S. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299, 700.
    Yin, P., Lee, H., Chau, G., Wu, Y., Li, S., Lui, W., Wei, Y., Liu, T., and Chi, C. (2004). Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. British journal of cancer 90, 2390-2396.

    下載圖示 校內:2016-08-19公開
    校外:2016-08-19公開
    QR CODE