| 研究生: |
羅仕杰 Lo, Shih-Chieh |
|---|---|
| 論文名稱: |
結構時變參數之識別研究與快速損壞評估驗證 Rapid Structural Damage Assessment through Time-varying Parameters |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 線上系統識別 、損害評估 、理亞普諾夫理論 、遞迴計算 、結構損害監測 、時變參數的遞迴計算最小平方估測法 、連續時間參考模型自適應性系統識別技術 |
| 外文關鍵詞: | system identification, adaptive identification, model-reference adaptive control, lyapunov theory, recursive least-squares method, structural health monitoring, damage assessment, relative story transfer function |
| 相關次數: | 點閱:168 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
識別結構健康狀況及了解其是否發生損害為發展結構物健康監測主要的重點之一。為了發展即時結構損害評估系統,本文說明二種線上結構識別方法,第一種為參考模型自適應性系統識別技術(model-reference adaptive identification technique, MRAIT),另一種為時變參數的遞迴計算最小平方估測法(recursive least- squares, RLS)。不同於傳統結構物之離線或非即時結構物識別方式,參考模型自適應性系統識別技術是將原先用於即時控制之參考模型自適應性結構控制(model-reference adaptive structural control, MRASC)概念,用於結構參數識別及結構損害監測中。其調整參數所用之自適應性識別律(adaptive identification law)是由Lyapunov理論所延伸而來,利用預選模型和目標結構之反應誤差可即時修正時變可調參數及對應之結構動態參數。時變參數的遞迴計算最小平方估測法為利用最小平方法(classic least- squares)之概念並將其修改為遞迴計算的方式,使其用於線上結構損害識別中。為驗證理論之可行性,本文利用國家地震工程研究中心之三層樓鋼構標竿結構振動台實驗資料進行各種參數討論。真實建物之健康監測與破壞診斷之部分,文中選擇於921集集地震發生損害之中興大學土木環工大樓進行驗證。此系統目前已安裝於國立成功大學雲平大樓內,未來可安裝於地震發生機率較高之建築物(例如:台東消防隊新大樓、宜蘭或花蓮地區之結構強地動觀測站),並與中央氣象局現有強震儀設備並聯運作。
The identification of structural damage is an important objective of health monitoring for civil infrastructures. In order to develop a real-time structural damage assessment system, many on-line damage assessment methods, such as the model-reference adaptive identification technique (MRAIT) and the on-line recursive least-squares (RLS) identification technique, are discuss in this thesis. In the MRAIT, the adaptation law for parameter estimation is designed based on Lyapunov’s direct method. An energy-like candidate function is composed of weighted response-tracking error and weighted parameter-estimation error. The RLS method is based on the framework of adaptive filters; the observations are obtained sequentially in real-time. It is desirable to perform the identification tasks recursively to reduce computation time and to be able to observe the variations of parameters on-line. By observing the variations of the identified time-varying modal properties of two benchmark models (benchmarks D and G) and a real building (Chung Hsing Civil and Environmental Engineering Department Building), global and local damage behavior due to weak elements or failure of components can be determined.
1.Anderson P. Adaptive forgetting in recursive identification through multiple models. International Journal of Control; 42:1175-1193, 1985.
2.Åström KJ, Wittenmark B. Adaptive Control, Addison-Wesley: New York, 1995.
3.Barkana I. Gain conditions and convergence of simple adaptive control. International Journal of Adaptive Control and Signal Processing; 19(1): 13-40, 2005.
4.Bernal D, Beck J. Preface to the special issue on Phase I of the IASC-ASCE structural health monitoring benchmark. Journal of Engineering Mechanics (ASCE); 130(1):1-2, 2004.
5.Bernal D, Gunes B. Flexibility based approach for damage characterization: a benchmark application. Journal of Engineering Mechanics (ASCE); 130(1), 61–70, 2004.
6.Caicedo JM, Dkye SJ, Johnson EA. Health monitoring based on component transfer functions. Advanccs in structural dynamics; 2:997-1004
7.Caicedo JM, Dkye SJ, Johnson EA. Natural excitation technique and eigensystem realization algorithm for Phase I of the IASC-ASCE benchmark problem: simulated data. Journal of Engineering Mechanics (ASCE); 130(1):49-60, 2004.
8.Chase JG, Begoc V, Barroso LR. Efficient structural health monitoring for a benchmark structure using adaptive RLS filters. Computers & Structures; 83(8-9):639-647, 2005.
9.Chase JG, Hwang KL, Mander JB. A Simple LMS-based Approach to the Structural Health Monitoring Benchmark Problem, Journal of Earthquake Engineering and Structural Dynamics (EESD); 34(6), 575-594, 2005.
10.Chase JG, Spieth HA, Blome CF, Mander JB. LMS-based Structural Health Monitoring of a Non-linear Rocking Structure, Earthquake Engineering & Structural Dynamics (EESD); 34(8), 909-930, 2005.
11.Chen B, Nagarajaiah S. H−/H∞ structural damage detection filter design using an iterative linear matrix inequality approach. Journal of Smart Materials and Structures; 17 (3), Art. No. 035019, 2008.
12.Chen B, Nagarajaiah S. Structural damage detection using decentralized controller design method. Journal of Smart Structures and Systems; 4(6), 779-794, 2008.
13.Chu SY, Soong TT, Reinhorn AM. Active, hybrid and semi-active structural control: a design and implementation handbook. Wiley: England, 2005.
14.Chu SY, Lo SC. Real-time control performance of a model-reference adaptive structural control system. Proceedings of the world forum on smart material and smart structures technology, China, Chongqing and Nanjing; May, 22-27, 2007.
15.Chu SY, Lo SC. Application of on-line recursive least-squares method on parameter identification of structures subjected to earthquake excitations. Proceedings of the Korea-Japan-Taiwan Joint Seminar on Earthquake Engineering for Building Structures, Jeju, Korea, October, 10-11; 115-123, 2008.
16.Chu SY, Lo SC. Application of real-time adaptive identification technique on damage detection and structural health monitoring. Structural Control and Health Monitoring; 16(2):154-177, 2009.
17.Chu SY, Lo SC. Application of the On-Line Recursive Least-Squares Method to Perform Structural Damage Assessment. Journal of Structural Control and Health Monitoring, (DOI: 10.1002/stc.362), Published inline, 2009.
18.Chu SY, Lo SC, Chang MC. Real-time control performance of a model-reference adaptive structural control system under earthquake excitation. Journal of Structural Control and Health Monitoring; 17(2):198-217, 2010.
19.Dharap P. Koh BH. Nagarajaiah S. Structural health monitoring using ARMarkov observers, Journal of Intelligent Material Systems and Structures; 17(6), 469-481, 2006.
20.Drenick RF, Shahbender RA. Adaptive servomechanisms. AIEE Transactions; 76:286-292, 1957.
21.Fel’dbaum AA. Optimal control systems, Academic Press: New York, 1965.
22.Gattulli V, Romeo F. Integrated procedure for identification and control of MDOF structures. Journal of Engineering Mechanics (ASCE); 126(7):730-737, 2000.
23.Ghanem R, Gravin H, Shinozuka M. Experimental verification of a number of structural system identification algorithms. Technical Report NCEER-91-0024, National Center for Earthquake Engineering Research, Buffalo, N.Y. 1991.
24.Ghanem R, Shinozuka M. Structural-system identification. I: Theory. Journal of Engineering Mechanics (ASCE); 121(2):255-264, 1995.
25.Ghanem R, Bujakov M, Torikoshi K, Itoh H, Inazuka T, Hiel H, Watanabe T. Adaptive control of nonlinear uncertain dynamical systems. Journal of Engineering Mechanics (ASCE); 123(11):1161–1169, 1997.
26.Ioannou M, Datta A. Robust adaptive control: A unified approach. Proc. IEEE; 79:1736-1768, 1991.
27.Johnson EA, Lam HF, Katafygiotis LS, Beck JL. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. Journal of Engineering Mechanics (ASCE); 130(1):3-15, 2004.
28.Juang JN. Applied System Identification. Prentice-Hall PTR: New Jersey, 1994.
29.Koh BH. Dharap P. Nagarajaiah S. Phan MQ. Real-time Structural Damage Monitoring by Input Error Function, Journal of American Institute of Aeronautics and Astronautics (AIAA); 43(8),1808-1814, 2005.
30.Landau ID, Lozano R. M’Saas M. Adaptive Control, Springer; London, 1998.
31.Lin CC, Wang CE, Wu HW, Wang JF. On-line building damage assessment based on earthquake records. Smart Materials and Structures, 14, S137–S153, 2005
32.Lin JW, Betti R, Smyth WA, Longman RW. On-line identification of non-linear hysteretic structural systems using a variable trace approach. Earthquake Engineering and Structural Dynamics; 30:1279–1303, 2001.
33.Lin JW, Betti R. On-line identification and damage detection in non-linear structural systems using a variable forgetting factor approach. Earthquake Engineering and Structural Dynamics (EESD); 33:419–444, 2004.
34.Lin PY, Loh CH, Yu SY, Wu CH. Shaking table test of benchmark building structure, Technical Report NCREE-06-020, National Center for Research on Earthquake Engineering, Taipei, Taiwan, 2006.
35.Ljung L. System Identification: Theory for the user, Prentice-Hall: New Jersey, 1987.
36.Lo SC, Chu SY. Application of on-line RLS on parameter identification of benchmark building structure on shaking table test. Proceedings of the Eleventh East Asia-Pacific Conference on Structural Engineering & Construction, Taipei, Taiwan, 19-21 November 2008; Paper No.EASEC11-228.
37.Loh CH, Lin HM. Application of off-line and on-line identification techniques to building seismic response data. Earthquake Engineering and Structural Dynamics; 25:269–290, 1996.
38.Loh CH, Lin CY, Hunag CC. Time domain identification of frames under earthquake loadings. Journal of Engineering Mechanics (ASCE); 126(7):693-703, 2000.
39.Lopez-Almansa F, Andrade R, Rodellar J. Predictive control of structures with reduced number of sensors and actuators. Proceedings of 10th World Conference on Earthquake Engineering, Madrid, Spain, July, 19-24, 1992.
40.Lus H, Betti R, Yu J, Angelis MD. Investigation of a system identification methodology in the context of the ASCE benchmark problem. Journal of Engineering Mechanics (ASCE); 130(1):71-84, 2004.
41.Preston RH. LMS-based method for damage detection applied to Phase II of Structural Health Monitoring benchmark problem, Masters Thesis, Dept of Civil Engineering, Texas A&M University, College Station, Texas, USA, 2006.
42.Shinozuka M, Yun CB, Imai H. Identification of linear structural dynamic system. Journal of Engineering Mechanics (ASCE); 108:1371-1390, 1982.
43.Slotine J-JE, Li W. Applied nonlinear control. Prentice Hall, 1991.
44.Yang JN, Wu JC, Agrawal AK, Li Z. Sliding mode control for seismic-excited linear and nonlinear civil engineering structures. Technical Report NCEER-94-0017, National Center for Earthquake Engineering Research, Buffalo, N.Y. 1994.
45.Yang JN, Lin S. Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique. Journal of Engineering Mechanics (ASCE); 131(3):290-298, 2005.
46.Yang JN, Lin S, Huang H, Zhou L. An adaptive extended Kalman filter for structural damage identification. Structural Control and Health Monitoring; 13:849-867, 2006.
47.Yen SM. Story Damage Index for Buildings Based on Identified Modal Parameters, master thesis, National Chung Hsing University, Taichung, 2005.(write in chinese)
48.Yuyin Qian and Akira Mita, Acceleration-based damage indicators for building structures using neural network emulators, Journal of Structural Control and Health Monitoring, 15(6), 901-920, 2008.