| 研究生: |
吳如雯 Wu, Ru-Wen |
|---|---|
| 論文名稱: |
SU-8微透鏡與單晶氧化鋅薄膜之製作及其於改善氮化鎵發光二極體光析出效率之研究 Enhanced Light Output of GaN-Based LEDs with Surface Structures using SU-8 Microlens and HTG ZnO Flim |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 發光二極體 、微透鏡 、氧化鋅 、表面粗化 |
| 外文關鍵詞: | Light-Emitting Diodes, Microlens, SU-8, ZnO, Roughed surface |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究主題係旨在製備具折射係數漸變微透鏡結構之氮化鎵發光二極體及利用水熱法(hydro-thermal growth, HTG)製備單晶氧化鋅薄膜應用於光電元件之光電及材料特性分析。:
本論文架構概分為兩個部分,第一部分主要分為理論模擬分析與實驗研究兩方面。理論模擬分析係透過光學模擬軟體(TracePro)分析不同尺寸之SU-8微透鏡對傳統氮化鎵發光二極體之光析出效率影響。由光學模擬結果顯示,微透鏡之柱狀直徑為8 m時,可獲得最佳之光析出效率改善;實驗研究係採用黃光微影製程製備SU-8柱狀結構於傳統氮化鎵發光二極體表面,再利用光阻與柱狀結構之吸附力及光阻本身之表面張力內聚於柱狀結構頂端形成球狀,進而完成SU-8微透鏡結構。從實驗結果顯示,具柱狀結構直徑8 m微透鏡之氮化鎵發光二極體元件於注入電流350 mA時,與傳統氮化鎵發光二極體相較,其光析出效率增加14.1%。由光學模擬結果與實驗結果證實本論文提出新穎結構(具折射係數漸變之SU-8微透鏡結構)可有效提升光析出效率。
本論文第二部份則為(一)利用水熱法於p-GaN或n-GaN表面進行氧化鋅薄膜(HTG)成長,(二)氧化鋅薄膜之材料特性分析與與(三)氧化鋅薄膜應用於光電元件之光電特性分析三個項目。經由調變時間、濃度及溫度等參數,我們成功於p-GaN與n-GaN表面製備出氧化鋅單晶薄膜,此研究過程係參酌試片SEM圖逐步建立最佳成長時間、濃度及溫度之參數。藉由XRD、EDS、TEM、霍爾量測與穿透率量測等多種材料分析,確認所製備的氧化鋅薄膜為一單晶結構;最後再將此單晶氧化鋅薄膜結構應用於傳統氮化鎵發光二極體表面,探討其對於傳統氮化鎵發光二極體元件之光電特性。
This thesis aims at the development of a surface roughness technique through using SU-8 photoresist microlens and an HTG ZnO film to improve the light output power (Lop) of GaN light-emitting diodes (LEDs). This thesis is divided into two parts. The first part focuses on opitical simulation and experimental study. TracePro was used to simulate the size effects of the SU-8 microlens on the light output efficiency of LEDs, which indicates that SU-8 microlens with 8 m in diameter for the cylinder portion could be the optimum design. Experiments have been conducted using photolithography process to form SU-8 microlens arrays on the surface of conventional GaN-based LEDs. Experimental results show an improvement in Lop of LEDs with 8 m Cylinder diameter microlens structure by 14.1% at 350 mA, as compared with that of the regular LEDs. The second part of this thesis is devoted to clarify the growth mechanism of ZnO thin film on GaN epilayer, material analysis and its application on LEDs for light output enhancement. Hydrothermal growth (HTG) method was employed to grow ZnO thin film on p-GaN and n-GaN surface. Effects of the growth time and temperature on the film structure and quality were examined. Material analysis using SEM, XRD, TEM and EDS were made and single crystallinity of the grown ZnO films was confirmed.
[1] A. Zukauskas, Introduction to Solid-State Lighting, John Wiley & Sons, New York, 2002.
[2] 史光國,“半導體發光二極體及固體照明”,全華科技圖書股份有限公司,2005。
[3] S. Nakamura, T. Mukai, and M.Senoh, “High brightness InGaN/AlGaN double heterostructureblue green light emitting diodes,” J. Appl. Phys., vol. 76, pp. 8180-8191, 1994.
[4] Strategies Unilimited, 2009.
[5] M. G. Craford, presented at the Nanoscience and Solid State Lighting Department of Energy Nanosummit, June 2004, Washington, D.C.
[6] Industrial Materials Magazine, no. 236, pp. 150-154, 2006.
[7] http://www.itri.org.tw/chi/eol/
[8] A. Zukauskas, M. S. Shur and R. Caska, “Introduction to solid state lighting,” Wiley, New York, 2002.
[9] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, vol. 78, no. 22, pp. 3379-3381, 2001.
[10] 陳啟昌,“奈米電子與光電元件課程”,國立中央大學光電科學研究所。
[11] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q. H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” App. Phys. Lett., vol. 87, pp. 203508-203510, 2005.
[12] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes,” IEEE Photonics Technol. Lett., vol. 20, pp. 2096-2098, 2008.
[13] H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express, vol. 14, no. 19, pp. 8654-8660, 2006.
[14] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383-9385, 2003.
[15] K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen, and B. W. Liou, “Effect of Surface Treatment on the Performance of Vertical-Structure GaN-Based High-Power Light-Emitting Diodes with Electroplated Metallic Substrates,” Japanese Journal of Applied Physics, vol. 45, pp. 3436-3441, 2006.
[16] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh and J. T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured indium–tin–oxide transparent ohmic contacts,” IEEE Photonics Technol. Lett., vol. 15, pp. 649-651, 2003.
[17] W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang and P. H. Wang, “Enhanced Light Output of GaN-Based Vertical-Structured Light-Emitting Diodes With Two-Step Surface Roughening Using KrF Laser and Chemical Wet Etching,” IEEE Photonics Technol. Lett., vol. 22, pp. 1318-1320, 2010.
[18] M. Y. Hsieh, C. Y. Wang, L.Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang, and J. J. Huang, “Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography,” IEEE Photonics Technol. Lett., vol. 29, pp. 658-660, 2008.
[19] M. K. Lee, C. L. Ho, P. C. Chen, “Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods,” IEEE Photonics Technol. Lett., vol. 20, pp. 252-254, 2008.
[20] C. Y. Cho, N. Y. Kim, J. W. Kang, Y. C. Leem, S. H. Hong, W. Lim, S. T. Kim , S. J. Park, “Improved Extraction Efficiency in Blue Light-Emitting Diodes by SiO2-Coated ZnO Nanorod Arrays,” Appl. Phys. Express., vol. 6, no. 4, pp. 042102, 2013.
[21] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee, and P. R. Wang, “Enhanced performance of vertical GaN-based LEDs with highly reflective p-ohmic contact and periodic indium-zinc oxide nano-wells,” IEEE Photonics Technol. Lett., vol. 22, pp. 338-340, 2010.
[22] W. C. Lee, K. M. Uang, D. M. Kuo, J. C. Chou, T. M. Chen, H. Y. Kuo, and S. J. Wang, “Use of highly reflective ohmic contact and surface KrF laser roughening to improve light output of vertical GaN-based light-emitting diodes,” IEEE Photonics Technol. Lett., pp. 141-142, 2008.
[23] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Tsai, W. I Hsu, W. C. Lee, P. R. Wang and C. R. Tseng, “The preparation of SiO2 nanotubes with controllable inner/outer diameter and length using hydrothermally grown ZnO nanowires as templates,” Jpn. J. Appl. Phys., vol. 49, pp. 04DN10, 2010.
[24] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, “Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN,” IEEE Photonics Technol. Lett., vol. 90, pp. 142115-142118, 2007.
[25] M. A. Tsai, P. Yu, C. L. Chao, C. H. Chiu, H.C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu, and S. C. Wang, “Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays,” IEEE Photonics Technol. Lett., vol. 21, pp. 257-259, 2009.
[26] R. Windish, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission of high-efficiency surface-textured light-emitting diodes,” App. Phys. Lett., vol. 79, pp. 2315-2317, 2001.
[27] H. W. Hunag, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu, and S. C. Wang, “Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography,” Nanotechnology, vol. 19, pp. 185301-185305, 2008.
[28] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, and J. K. Sheu, “Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography,” App. Phys. Lett., vol. 91, pp. 013504-013506, 2007.
[29] H. W. Hunag, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology, vol. 16, pp. 1844-1849, 2005.
[30] C. H. Hou, S. Z. Tseng, C. H. Chan, T. J. Chen, H. T. Chien, F. L. Hsiao, H. K. Chiu, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” App. Phys. Lett., vol. 95, pp. 133105-133108, 2009.
[31] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates,” IEEE Photonics Technol. Lett., vol. 20, pp. 1193-1195, 2008.
[32] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, “GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nanosphere lithography,” Jpn. J. Appl. Phys., vol. 47, no. 8, pp. 6706-6708, 2008.
[33] C. H. Chan, C. H. Hou, S. Z. Tseng, T. J. Chen, H. T. Chien, F. L. Hsiao, C. C. Lee, Y. L. Tsai, and C. C. Chen, “Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate,” Appl. Phys. Lett., vol. 95, pp. 011110-011112, 2009.
[34] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” App. Phys. Lett., vol. 84, pp. 855-857, 2004.
[35] http://www.tf.uni-kiel.de/matwis/amat/semitech_en/kap_2/backbone/r2_3_3.html
[36] 史光國,“現代半導體發光及雷射二極體材料技術”,全華科技圖書股份有限公司。
[37] 莊賦祥,藍綠光發光二極體,科學發展,349期,pp. 52-54,2002。
[38] http://www.fpd.edu.tw/entry/content!newsView.htm?id=1004
[39] B. E. Yoldas, “Investigations of porous oxides as an antireflective coating for glass surfaces,” Applied Optics, vol. 19, no. 9, pp. 1425-1429, 1980.
[40] E. Fred Schubert, Light-Emitting Diodes, Cambridge University Press, 2/e, 2006.
[41] Dr. Volker Harle, Opto Semiconductor, OSRAM, Sep. 2005.
[42] 李明洪,“氮化鎵高數值孔徑微透鏡之設計、製作與特性分析.” 國立中央大學博物理研究所碩士論文(2002)
[43] S. I. Chang and J. B. Yoon, (2004) Optical Society of America.
[44] Jie-Ming Kang , Mau-Kuo Wei , Microelectronic Engineering 87 (2010) 1420–1423
[45] M. He, X. Yuan, J. Bu, and W. C. Cheong, Optics Letters, Vol. 29(2004), p. 9
[46] M. He, X. Yuan, N. Q. Ngo, W. C. Cheong, and J. Bu, Applied Optics ,Vol. 42 (2003),p. 36
[47] X. C. Yuana, W. X. Yu, M. He, J. Bu, and W. C. Cheong, H. B. Niu and X. Peng, Applied Physics Letters ,Vol. 86 (2005) ,p. 114102.
[48] S. M. Sze, “Semiconductor Devices,” 2nd edition, John Wiley & Sons, Ch. 6, pp. 188-193.
[49] Jamil Elias, and Ramon Tena-Zaera, “Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions,” Chem. Mater., vol. 20, pp. 6633-6637, 2008.
[50] K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Appl. Phys. Lett., vol. 78, no. 4, pp. 475-478, 2000.
[51] H. Sato, T. Minami, Y. Tamura, S. Sakata, T. Mori, and N. Ogawa, Thin Solid Films, vol. 246, pp. 86, 1994.
[52] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Progress in Materials Science, vol. 50, pp. 293-340, 2005.
[53] Y. M. Lu, H. W. Liang, D. Z. Shen, Z. Z. Zhang, D. X. Zhao, Y. C. Liu, X. W. Fan, and T. Steiner, “Excitonic properties of vertically aligned ZnO nanotubes under high-density excitation,” Journal of Luminescence, pp. 228-232, 2006.
[54] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, “Advances in wide bandgap materials for semiconductor spintronics,” Materials Science and Engineering, R 40, pp. 137-168, 2003.
[55] Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., vol. 92, pp. 113505-113507, 2008.
[56] M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics Technol. Lett., vol. 20, pp. 1293-1295, 2008.
[57] K. Tsukuma, and T. Akiyama and Imai, “Liquid phase deposition film of tin oxide, ” J. Non-Cryst. Solids, vol. 210, pp. 48-54, 1997.
[58] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, and L. D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chem. Phys. Lett., vol. 365, pp. 300-304, 2002.
[59] S. Li, H. Zhang, and Y. Ji, D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route,” Nanotechnology, vol. 15, pp. 1428-1432, 2004.
[60] Kurtis S. Leschkies, Alan G. Jacobs, David J. Norris, and Eray S. Aydil, “Nanowire-quantum-dot solar cells and the influence of nanowire length on the collection efficiency,” Appl. Phys. Lett., vol. 95, pp. 193103, 2009.
[61] W. Guo, L. Fu, Y. Zhang, K. Zhang, L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan, “Microstructure, optical, and electrical properties of p-type SnO thin films,” Appl. Phys. Lett., vol. 96, pp. 856-857, 2010.
[62] Qi Qi, Tong Zhang, Qingjiang Yu, RuiWang, Yi Zeng, Li Liu, and Haibin Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing,” Sensors and Actuators B, vol. 133, pp. 638-643, 2008.
[63] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., vol. 105, pp. 3350-3352, 2001.
[64] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., vol. 124, pp. 12954-12955, 2002.
[65] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem., vol. 115, pp. 3139-3142, 2003.
[66] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., vol. 17, pp. 1001-1004, 2005.
[67] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[68] http://www.lambdares.com/
校內:2019-08-25公開