| 研究生: |
何佳勳 Ho, Chia-Hsun |
|---|---|
| 論文名稱: |
乙醇酸和乙醛酸在二氧化鈦粉末表面上的吸附與反應 Adsorption and Reactions of Glycolic Acid and Glyoxylic Acid on Powdered TiO2 |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 乙醇酸 、乙醛酸 、二氧化鈦 |
| 外文關鍵詞: | tio2, glycolic acid, glyoxylic acid |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是在真空系統中,利用傅氏轉換紅外光譜儀(FTIR)研究乙醇酸和乙醛酸在二氧化鈦粉末表面上的吸附與反應。
乙醇酸可以分子性(不解離)或是以醇和酸官能基分解性的吸附在TiO2表面,加熱至150 oC時會在表面形成內酯結構。熱反應產物為CO(a)、CO2(a)、CO3(a)、HCOO(a) 和CH3O(a)。有氧和無氧下的光反應產物為CO2(a)、CO3(a)、HCO3(a) 和HCOO(a),CO2大部分來自於乙醇酸分子本身的直接分解。O2的存在有利於乙醇酸的熱分解和光分解反應的進行。
乙醛酸可以分子性(不解離)或是以酸官能基分解性的吸附在TiO2表面,也可能透過醛基的O原子的孤對電子與表面的Ti離子作用而吸附。乙醛酸/ TiO2加熱至125 oC時也會在表面形成內酯結構。熱反應產物為CO(a)、CO2(a)、CO3(a)、HCOO(a) 和CH3O(a)。有氧下乙醛酸光分解產物為CO2(a)、CO3(a)、HCO3(a) 和HCOO(a),無氧下則多出現了CO(a)的產物。光反應產生的CO2大部分來自於乙醛酸分子本身的直接分解。O2的存在有利於乙醇酸的熱分解和光分解反應的進行。
乙醇酸和乙醛酸在TiO2表面的熱分解和光分解可能的反應途徑也在本篇論文中有所討論。
Fourier-transform infrared spectroscopy has been employed to investigate the adsorption and reactions of glycolic acid and glyoxylic acid on powdered TiO2.
Glycolic acid is adsorbed molecularly or dissociatively by the decomposition of its carboxylic or hydroxyl group. When heated to 150 oC, the adsorbed glycolic acid forms a lactone-like structure on the surface. The products of thermal decomposition includ CO(a), CO2(a), CO3(a), CH3O(a) and HCOO(a). UV irradiation of TiO2 with adsorbed glycolic acid generates CO2(a), CO3(a), and HCOO(a). The CO2 produced is directly from the decomposition of the carboxylic group of glycolic acid itself. The reactivity of glycolic acid is enhanced in the presence of O2.
Glyoxylic acid can be adsorbed on the TiO2 surface molecularly, through the interaction of the carboxylic group or aldehyde group with Lewis-acid surface sites. When the glyoxylic acid is heated to 125 oC, it forms a lactone-like structure on the surface. The products of thermal decomposition includ CO(a)、CO2(a)、CO3(a)、HCOO(a) and CH3O(a). Glyoxylic acid on TiO2 decomposes to form CO2(a), CO3(a), HCO3(a), and HCOO(a) under photoirradiation in the presence of O2. However, in the absence of O2, CO(a) is also generated. The presence of O2 accelerates the thermal and photo decomposition of glyoxylic acid. Possible reaction mechanisms for both the compounds are discussed.
1. A. Fujishima, and K. Honda, Nature 37, 238, 1972.
2. A. M. Fox, and M. T. Dulay, Chem Rev. 93, 341, 1993.
3. I. K. Konstantinou, and T. A. Albanis, Appl. Catal. B 42, 319, 2003.
4. A. Hagfeldt, and M. Grätzel, Chem. Rev. 95, 49, 1995.
5. W. Wu, J. M. Herrman, and P. Pichat, Catal. 3, 73, 1989.
6. S. N. Franks, and A. J. Bard, J. Phys. Chem. 81, 1484, 1977.
7. J. K. Leland, and A. J. Bard, J. Phys. Chem. 91, 5076, 1987.
8. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
9. T. Wu, G. Liu, J. Zhao, H. Hidaka, and N. Serpone, J. Phys. Chem. B 102, 5845, 1998.
10. C. Fotiadis, N. P. Xekoukoulotakis, and D. Mantzavinos, Catalysis Today. 124, 247, 2007.
11. F. B. Marquié, U. Wilkenhöner, V. Simonb, A. M. Braunc, E. Oliveros, and M. T. Maurette, Photochem. Photobiol. A 132, 225, 2000.
12. J.-L. Lin, J. Chin. Chem. Soc. 60, 457, 2002.
13. J. K. Burdett, T. Hughbands, J. M. Gordon, J. W. Richardson, Jr., and J. V. Smith, J. Am. Chem. Soc. 109, 3639, 1987.
14. J. Augustynski, Electrochim. Acta 38, 43, 1993.
15. L. Cao, F.-J. Spiess, A. Huang, and S. L. Suib, J. Phys. Chem. B 103, 2912, 1999.
16. K.-C. G. Low, S. R. McEvoy, and R. W. Matthews, Environ. Sci. Technol. 25, 460, 1991.
17. A. Wold, Chem. Mater. 5, 280, 1993.
18. P. W. Atkins, Physical Chemistry, Oxford University, p997, 1994.
19. J.-J. Yang, D.-X. Li, Q-L. Li, Z.-J. Zhang and H.-Q. Wang, Acta Phys. Chim. Sin. 17, 278, 2001.
20. 田克勝, 王保偉, 許根慧, 天然氣化工. 6, 60, 2006.
21. 潘鶴林, 田恒水, 浙江化工. 31, 22, 2001.
22. B. Wieland, J. P. Lancaster, C. S. Hoaglund, P. Holota, and W. J. Tornquist, Langmuir 12, 2594, 1996.
23. G. N. Ekstrom, and A. J. McQuillan, J. Phys. Chem. B 103, 10562, 1999.
24. 楊尚儒, 碩士論文, 國立成功大學化學研究所 2006。
25. J. Fan and J. T. Yates, Jr., J. Phys. Chem. 98, 10621, 1994.
26. C.-C. Chuang, J.-S. Shiu, and J.-L. Lin, Phys. Chem. Chem. Phys. 2, 2629, 2000.
27. P. Bour, C. N. Tam, J. Sopkova, and F. R. Trouw, J. Chem. Phys. 108, 351, 1998.
28. C. N. Rusu, and J. T. Yates, J. Phys. Chem. B 104, 1729. 2000.
29. L.-F. Liao, W.-C. Wu, C.-Y. Chen, and J.-L. Lin, J. Phys. Chem. B 105, 7678, 2001.
30. L.-F. Liao, C.-F. Lien, and J.-L. Lin, Phys. Chem. Chem. Phys. 3, 3831, 2001.
31. J. E. Tackett, Appl. Spectrosc. 43, 483, 1989.
32. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley & Sons, New York, p 233 ,1986.
33. G. B. Deacon, R. J. Phillips, Coord. Chem. Rev. 33, 227, 1980.
34. G. B. Deacon, F. Huber, R. J. Phillips, Inorg. Chim. Acta Art. Lett. 104, 41, 1985.
35. W.-C. Wu, C.-C. Chuang, and J.-L. Lin, J. Phys. Chem. B 104, 8719, 2000.
36. G. A. M. Hussein, N. Sheppard, M. I. Zaki, and R. B. Fahim, J. Chem. Soc. Faraday Trans. 87, 2661, 1991.
37. G. Socrates, Infrared and Raman Characteristic Group Frequencies Tables and Charts. Wiley & Sons, New York, 2001.
38. H. K. Hall, Jr., and R. Zbinden, J. Am. Chem. Soc. 80, 6428, 1958.
39. T. Sano, T. Sekine, Z. Wang, K. Soga, I. Takahashi, and T. Masuda, Chem, Commun. 1827, 1997.
40. Y.-T. Woo, J. C. Arcos, M. F. Argus, G. W. Griffin, and K. Nishiyama, Arch. Pharmacol. 299, 283, 1977.
41. F. Coloma, B. Bachiller-Baeza, C. H. Rochester, and J. A Anderson, Phys. Chem. Chem. Phys. 3, 4817, 2001.
42. L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, and J.-L. Lin, J. Phys. Chem. B, 106, 11240, 2002.
43. G. Chuchani, I. Martin, A. Rotinov, and R. M. Domingues, J. Phys. Org. Chem. 6, 54, 1993.
44. L. R. Domingo, J. Andre´s, V. Moliner, and V. S. Safont, J. Am. Chem. Soc. 119, 6415, 1997.
45. F. Boccuzzi, and A. Chiorino, J. Phys. Chem. 100, 3617, 1996.
46. M. A. Henderson, Surface Science 400, 203, 1998
47. L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, and J.-L. Lin, J. Phys. Chem. B 106, 11240, 2002.
48. O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac, and M. C. Thurnauer, J. Phys. Chem. 97, 13284, 1993.
49. H. Harada, T. Ueda, and T. Sakata, J. Phys. Chem. 93, 1542, 1989.
50. T. Sakata, T. Kawai, and K. Hashimoto, J. Phys. Chem. 88, 2344, 1984.
51. I. Dolamic, and T. Bürgi, J. Phys. Chem. B 110, 14898, 2006.
52. C.-C. Chuang, C.-C. Chen, and J.-L. Lin, J. Phys. Chem. B 103, 2439, 1999.
53. R. Gao, J. Stark, D. W. Bahnemann, and J. Rabani, Photochem. Photobiol. A 148, 387, 2002.
54. J. Raskó. And J. Kiss, Appl. Catal. A 287, 252, 2005.
55. J. E. Rekoske, and M. A. Barteau, Langmuir 15, 2061, 1999.
56. H. Idriss, K. S. Kim, and M. A. Barteau, J. Catal. 139, 119, 1993.
57. R. A. Back, and S. Yamamoto, Can. J. Chem. 63, 542, 1985.
58. C.-H. Ao, S.-C. Lee, J.-Z. Yu, and J.-H. Xu, Appl. Catal. B 54, 41, 2004.
59. H. Hollenstein, R. W. Schar, N. Schwizgebel, G. Grassi, and H. H. Gunthard, Spectrochimica Acta. 39, 193, 1983.
60. H. Hollenstein, T.-K. Ha, and H. H. Gunthard, J. Mol. Struct. 146, 289, 1986.
61. D. K. Havey, K. J. Feierabend, and V. Vaida, J. Phys. Chem. A 108, 9069, 2004.
62. G. Fleury, V. Tabacik, J. Mol. Struct. 10, 359, 1971.