簡易檢索 / 詳目顯示

研究生: 方柏凱
Fung, Po-Kae
論文名稱: 以離子性聚合物-金屬複材發展變曲率心導管
Development of an active catheter by using IPMC (Ionomeric Polymer-Metal Composite)
指導教授: 朱銘祥
Ju, Ming-Shaung
林宙晴
Lin, Chou-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 66
中文關鍵詞: 離子式電驅動聚合物IPMC致動器主動式心導管
外文關鍵詞: Ionic electro-active polymer, control, Active catheter, active guide wire
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   心導管手術是目前治療心血管疾病常見的輕微侵入性醫療手術,而主動式心導管的發展可解決手術上需抽換不同曲率的導引線,使心導管通過分岐的血管進入冠狀動脈之不便。本研究旨在是以離子性聚合物-金屬複材(Ionomeric Polymer-Metal Composite, IPMC)發展主動導引線(dim. 1 ~ 2 mm)。

      本研究先開發離子性聚合物-金屬複材製程, 建立量測平台並分析複材特性, 建立數學模型, 進行開路與閉路控制並比較其結果及測試導引線成品。本研究發展的金屬置換無電鍍法可製作出具電驅動特性之複材厚膜(長20 mm,寬5 mm,厚200 um)。經由解析推導與有限元素模擬驗證得知,複材致動時之彈性係數與質子交換膜厚度和整體厚度之比值三次方有關,另外,從量測結果得知複材為非線性且時變之系統,在曲率響應上與電壓輸入成正相關,於水下量測之頻寬約3 ~ 4 Hz,為至少3階之系統。以PID控制器可使複材之步階響穩態誤差低於5%,最大超越量低於10 %,上升時間約0.4秒。製作完成之導引線在6V電壓的驅動下可順利穿越內徑約3 mm之Y型通道。

      本研究開發的複材在製程時間和複雜性方面相較於相關文獻略優,應用上已能利用PID控制器進行曲率的定位,日後若能藉由微製造技術發展微型曲率感測器並縮小導引線尺寸以及降低導線電阻將可實現完整主動式心導管系統。

     Cardiac catheterization is a common minimum invasive surgical procedure for treating the cardiovascular diseases. The development of active catheter could alleviate the need to frequently change guide wires during the surgery. The main goal of this study is to develop an active guide wire (dim. 1 ~ 2 mm) by using ionomeric polymer-metal composite (IPMC).

     In this work, first, a novel fabrication method for IPMC film was developed and a testing system was set up to test the mechanical properties and performance of the IPMC actuator. Second, empirical model of the IPMC actuator was identified and fitted with an ARMAX model. Performances of open-loop and closed-loop controls of the IPMC actuator were compared for the overshoot percentage and the settling time. The prototype was tested on a conduit (dim. 3 mm) which has a Y-junction and a T-junction.

     The new metal replacement electroless plating method developed in this thesis can yield IPMC film (20 x 5 x 0.2 mm) with good electro active properties. From both analytical and FEM analyses, we found that the Young’s modulus of the composite film depends on the cubic power of the ratio of thickness of Nafion to that of the metal film. The IPMC actuator was a time-varying third order system. The bending angle of the active guide wire is proportional to the applied voltage. Bandwidth of the active guide wire system is about 3 ~ 4 Hz. By using the PID controller, the steady-state error for step response is less than 5% and the overshoot percentage is less than 5% and the settling time is about 0.4 seconds. The prototype active guide wire can go through the conduit system driven by applying a potential of 6 volts.

     The new fabrication process developed in this work has the advantages of shorter process time and simpler procedures when compared with existing methods. Bending angle of the guide wire can be accurately controlled by using the PID controller. Further miniaturization of the guide wire and combined with strain gage based curvature sensor by using the micro system technology may result in a complete active catheter system.

    摘 要 i Abstract ii 誌 謝 iv 目 錄 v 圖目錄 viii 表目錄 xi 符號表 xii 第一章 緒 論 1  1-1 研究背景 1   1-1-1 心導管手術之沿革 1   1-1-2 傳統導引線 3   1-1-3 電驅動聚合物之發展 4  1-2 文獻回顧 8  1-3 研究動機與目的 10  1-4 本文架構 11 第二章 方法與實驗 12  2-1 主動式導引線概念設計 12  2-2 離子性聚合物-金屬複材結構與特性 14  2-3 離子性聚合物-金屬複材剛性分析 16   2-3-1 拉伸分析 16   2-3-2 彎曲分析 17   2-3-3 彎曲行為之有限元素法剛性分析 18  2-4 離子性聚合物-金屬複材製程 20  2-4-1 以微機電製程技術發展 20  2-4-2 以新型無電鍍金(Au)製程發展 24  2-5 性能測試 29   2-5-1 量測平台 29   2-5-2 片電阻與曲率計算方式 31   2-5-3 系統響應測試 33  2-6 系統模型建立 35  2-7 系統控制 37  2-8 導引線組裝與測試 39 第三章 結 果 40  3-1 製程結果 40  3-2 剛性模擬 43  3-3 響應測試 44  3-4 系統鑑別 49  3-5 控制結果 53  3-6 導引線測試結果 55 第四章 討 論 56  4-1 製程發展性 56  4-2 剛性分析 57  4-3 性能響應測試 57   4-4 系統鑑別與控制 59  4-5 導引線測試 59 第五章 結論與建議 60  5-1 結論 60  5-2 建議 61 參考文獻 62 自 述 66

    1.http://www.ndcnc.gov.cn/datalib/2003/Science/DL/DL-179054
    2.http://www.cmuh.org.tw/HTML/dept/1100/Page10146/Page16449/page16449.html
    3.http://www.med.umich.edu/1libr/aha/aha_hrtcath_art.htm
    4.http://12.31.13.116/library/healthguide/enus/images/media/medical/hw/nr551704.jpg
    5.http://www.guidant.com/products/TemplateImages/visionUS3_lg.jpg
    6.http://formosa.faithweb.com/Cardio/Bio_SV.htm
    7.http://www.guidant.com/products/VIproductcatalog.pdf
    8.M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson and J. Smith, “Ionic polymer–metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review”, Smart Material Structure, vol.7, R15–R30, 1998.
    9.S. Guo, T. Fukuda, and K. Asaka, “A New Type of Fish-Like Underwater Microrobot”, IEEE/ASME Transactions on Mechatronics, vol. 8, no. 1, pp.136-147, 2003
    10.http://www.eamex.co.jp/index_e.html
    11.Y. Haga, Y. Tanahashi, and M. Esashi, “Small Diameter Active Catheter Using Shape Memory Alloy”, MEMS 98. Proceedings, the Eleventh Annual International W, pp.419-424, 1998.
    12.K.-T. Park and M. Esashi, “A Multilink Active Catheter with Polyimide-Based Integrated CMOS Interface Circuits”, Journal of microelectromechanical systems, vol. 8, no. 4, pp. 349-356, 1999.
    13.Y. Haga, M. Esashi, and S. Maeda, “Bending, torsional and extending active catheter assembled using electroplating”, MEMS 2000. The Thirteenth Annual International Conference, pp.181-186, 2000.
    14.T. Mineta, T. Mitsui, Y. Watanabe, S. Kobayashi, Y. Haga, and M. Esashi, “Batch fabricated flat meandering shape memory alloy actuator for active catheter”, Sensors and Actuators A, pp.112-120, 2001.
    15.Y. Haga, T. Mineta, and M. Esashi, “Active catheter, active guide wire and related sensor systems”, World Automation Congress, Proceedings of the 5th Biannual, pp.291-296, 2002.
    16.K. Ishiyama, M. Sendoh, and K. I. Arai, “Magnetic micromachines for medical applications”, Journal of Magnetism and Magnetic Materials, pp.242–245, 2002.
    17.K. Ikuta, H. Ichikawa, K. Suzuki, and T. Yamamoto, “Safety active catheter with multi-segments driven by innovative hydro-pressure micro actuators”, MEMS-03 Kyoto, IEEE the Sixteenth Annual International Conference, pp.130-135, 2003.
    18.S. Guo, T. Nakamura and T. Fukuda, “Micro Active Guide Wire Using ICPF Actuator”, IEEE, AMC’96-MIE, pp.729-734, 1996.
    19.許敦皓,朱銘祥,林宙晴,應用離子性聚合物-金屬複材開發尿道人工括約肌之研究,國立成功大學機械系人機系統實驗室,碩士論文,2005.
    20.M. Shahinpoor and K. J. Kim, “Novel ionic polymer-metal composities equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles”, Sensors and Actuators A, vol. 96, pp.125-132, 2002.
    21.S. Tung, S. R. Witherspoon, L. A. Roe, Al Silano, David P Maynard and Ned Ferraro, “A MEMS-based flexible sensor and actuator system for space inflatable structures”, Smart Materials and Structures, pp.1230-1239, 2001.
    22.J. W. L. Zhou, H.-Y. Chan, T. K. H. To, K. W. C. Lai, and W. J. Li, “Polymer MEMS Actuators for Underwater Micromanipulation”, IEEE/ASME Transactions on Mechatronics, vol. 9, no. 2, 2004.
    23.C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, “A Novel Fabrication of Ionic Polymer-Metal Composites (IPMC) actuator with Silver Nano-Powders”, Transducer’s 05, 13th international conference on solid-state sensor, Actuators and Microsystems, no. 1D5.4, pp.217-220, 2005.
    24.M. Taya, “Design of Electronic Composites with Applications to Bio-sensors and Actuators”, talk on Industrial Technology Research Institute in Taiwan, 2005.
    25.M. Shahinpoor and K. J. Kim, “Ionic polymer–metal composites: I. Fundamentals”, Smart materials and structures, pp.819-833, 2001.
    26.K. J. Kim and M. Shahinpoor, “The effect of surface-electrode resistance on the actuation of ionic polymer-metal composites (IPMCs) artificial muscles”, SPIE vol. 3669, pp. 308-319, 1999.
    27.R. R. Craig Jr, “Mechanics of Materials”, JOHN WILEY & SONS 2nd edition, pp.362-373, 1999.
    28.K. J. Kim and M. Shahinpoor, “A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles”, Polymer, vol. 43, pp. 797-802, 2002.
    29.白蓉生,電鍍教程,徐氏基金會出版,pp.165-166,1981.
    30.神戶德藏,無電解鍍金,復漢出版社,pp.94-102,1989.
    31.K. J. Kim and M. Shahinpoor, “Ionic polymer–metal composites: II. Manufacturing techniques”, Smart Materials and Structures 12, pp.65-79, 2003.
    32.http://140.114.18.41/surface/chap/chap4.htm
    33.M. J. Grimble, “System Identification”, Prentice Hall, pp.148-154, 1989.
    34.M. L. Guilly, M. Uchida and M. Taya, “Nafion Based Smart Membrane as an Actuator Array”, Smart Structures and Materials, Proceedings of SPIE, vol. 4695, pp.78-84, 2002.

    下載圖示 校內:2008-08-02公開
    校外:2008-08-02公開
    QR CODE