簡易檢索 / 詳目顯示

研究生: 李承恩
Li, Chen-En
論文名稱: 金屬氫化物儲氫系統中導熱發泡金屬體積比分佈對系統性能之影響
Effects of metal foam volume-fraction distribution on the performance of metal-hydride hydrogen storage systems
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 97
中文關鍵詞: 金屬氫化物儲氫系統熱傳增益發泡金屬儲氫量發泡金屬分佈儲氫時間釋氫時間釋氫流率流率穩定性
外文關鍵詞: Metal hydride system, Heat conduction augmentation, Metal foam, Hydrogen storage capacity, Distribution of metal-foam volume fraction, Hydriding time, Dehydriding time, Mean hydrogen discharge rate, Flow rate steadiness
相關次數: 點閱:176下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑒於國際原油存量日漸耗竭,尋找替代能源實已刻不容緩。由於氫氣具有高能量密度以及環保的特性,因此它被評估為未來能源系統中最具有潛力能量載體之一,在安全性與成本的考量下,以金屬氫化物作為儲存方式是較為理想的;但其在儲存與運輸方面尚有許多問題需要克服。由於金屬氫化物儲氫系統的儲氫與釋氫是一伴隨著放熱與吸熱的可逆化學反應,因此系統內部的熱傳良好與否對整體儲氫系統的儲釋氫性能影響甚劇。本數值研究藉由添加發泡金屬來增強儲氫系統內部的熱傳,並以本研究團隊在先前研究中所建立的金屬氫化物 (LaNi5) 儲釋氫行為計算模型作為儲氫系統的理論熱質傳模型,且將計算結果與其他學者所發表的實驗數據進行驗證,進而探討系統參數設計對其性能之影響等重要研究課題。

    在先前本研究團隊研究發現僅需很少的金屬發泡結構即可有效地增強系統內部熱傳效果,使儲氫時間大大的縮短。同時,在固定系統體積下,發泡金屬所添加的體積百分率 (φmf) 增加會占據系統內部空間而使儲氫金屬含量減少,最大可儲氫量降低。因此,在指定的儲氫量需求下,存在一最佳φmf值使得儲氫時間最短。然而,在先前所討論發泡金屬體積百分率 (φmf) 均是以均勻的方式分佈在系統內部。但由於系統內部位置距離冷卻壁面或加熱壁面位置的不同,其所需的熱傳重要性也會有所不同。因此,本論文討論重點為在固定總發泡金屬含量下,依其空間位置所需熱傳重要性不同,添加不同體積百分率的發泡金屬。透過此方式能使儲氫系統在其最大可儲氫量不變的情況下,進一步的提升系統性能。研究發現,此方式確能使系統在儲氫與釋氫的反應中能進一步縮短 33% 的儲釋時間和提升平均釋氫流率 33%。此外,在系統釋氫的穩定性上也有 22% 的增益。

    關鍵字:金屬氫化物儲氫系統、熱傳增益、發泡金屬、儲氫量、發泡金屬分佈、儲氫時間、釋氫時間、釋氫流率、流率穩定性

    In view of the threatening depletion of crude oil, it is imperative to find an alternative source of energy for sustainable development. Among all current options, hydrogen appears to be the most promising alternative to fossil fuels, because it has a high calorific value and is environmentally friendly. For safety and cost concerns, hydrogen storage in metal hydrides appears to be a more promising option at present, but there are still a lot of problems to be overcome for hydrogen storage and transportation. Because of the hydriding and dehydriding processes of metal hydrides are reversible endothermic and exothermic chemical reactions, heat transfer characteristics of hydrogen storage system would affect the hydrogen supply characteristics directly. In this work, we enhance the heat transfer in a metal-hydride reactor (MHR) by adding metal foam within the MHR. The mathematical model constructed in one previous work of our research group is used to simulate the hydriding and dehydriding processes in an MHR, and experimental data in a previous work are used to validate this model.

    In the previous work of our group mentioned above, it was conclued that, with a fixed amount of metal hydride powder sealed in the MHR, saving a relatively small fraction of the reactor internal volume to accommodate a metal foam usually suffices to substantially facilitate heat removal from the system, thereby greatly shortening the hydriding time. However, for a metal foam of fixed apparent size, increasing it's volume fraction φmf would reduce the metal hydride content, and hence the maximum hydrogen storage capacity of the system. Consequently, if a prescribed amount of hydrogen is to be stored in the system, there exists an ``optimal"φmf value to minimize the charging time. However, in the previous study, the distribution of the metal foam is uniform, which at different distances from the cooling (heating) wall, differentφmf values may be needed to optimize the system performance. Therefore, in this thesis, we allow for a spatially varyingφmf distribution in an MHR . In this way, we could further enhance the performance of the system, and it wouldn't reduce the maximum hydrogen storage capacity of the system. Results of the study indicate that, in this way, we do make the hydrogen time and dehydrogen time reduce by 33%, and we could also make the mean hydrogen discharge rate increase by 33%. Moreover, we could make the steadiness of hydrogen discharge rate increase by 22%.

    Keywords : Metal hydride system, Heat conduction augmentation, Metal foam, Hydrogen storage capacity, Distribution of metal-foam volume fraction, Hydriding time, Dehydriding time, Mean hydrogen discharge rate, Flow rate steadiness

    書名頁……………….………………………………………………………………i 論文口試委員審定書………………………………………………………………ii 中文摘要…………………………………………………………………………iii 英文摘要……………………………………………………………………………iv 誌謝…………………………………………………………………………………vi 目錄………………………………………………………………………………vii 表目錄………………………………………………………………………………x 圖目錄……………………………………………………………………………xii 符號說明……………………………………………………………………………xv 第一章、緒論………………………………………………………………………1 1.1研究動機…………………………………………………………………………3 1.2研究目的與本文架構……………………………………………………………4 第二章、 儲氫金屬背景與文獻回顧………………………………………………6 2.1金屬儲氫材料背景………………………………………………………………6 2..1.1儲氫金屬的歷史……………………………………………………………9 2.2儲氫合金的分類…………………………………………………………………9 2.2.1鎂系儲氫合金………………………………………………………………12 2.2.2稀土爛系儲氫合金…………………………………………………………12 2.2.3鈦系儲氫合金………………………………………………………………12 2.2.4鐵系儲氫合金………………………………………………………………13 2.3發泡金屬材料簡介……………………………………………………………13 2.3.1發泡金屬背景………………………………………………………………13 2.3.2發泡金屬種類………………………………………………………………14 2.3.3發泡金屬在熱傳方面特性…………………………………………………14 2.3.4發泡金屬的製程……………………………………………………………14 2.4金屬氫化物反應器文獻回顧…………………………………………………16 第三章、 理論模型與數值計算分析……………………………………………19 3.1幾何模型………………………………………………………………………19 3.2熱質傳理論模型………………………………………………………………19 3.2.1動量方程式 (Darcy 定律) ……………………………………………22 3.2.2質量守恆式…………………………………………………………………24 3.2.3能量守恆式…………………………………………………………………24 3.2.4 平衡壓力曲線 (又稱P-C-T曲線)………………………………………25 3.2.5反應動力方程式……………………………………………………………26 3.3初始條件與邊界條件…………………………………………………………27 3.3.1初始條件……………………………………………………………………27 3.3.2邊界條件……………………………………………………………………28 3.4數值方法………………………………………………………………………29 3.5模型驗證………………………………………………………………………35 3.5.1儲氫…………………………………………………………………………36 3.5.2釋氫…………………………………………………………………………40 第四章、 結果與討論……………………………………………………………43 4.1儲釋氫行為分析………………………………………………………………43 4.1.1儲氫…………………………………………………………………………43 4.1.2釋氫…………………………………………………………………………43 4.2添加發泡金屬對儲釋氫性能影響……………………………………………47 4.2.1儲氫…………………………………………………………………………47 4.2.2釋氫…………………………………………………………………………47 4.3發泡金屬空間分佈對儲釋氫性能影響………………………………………52 4.3.1等間距三等分………………………………………………………………54 4.3.2等體積三等分………………………………………………………………64 4.3.3二階曲線……………………………………………………………………74 4.4不同形式發泡金屬比較………………………………………………………86 第五章、 結論與未來工作………………………………………………………91 5.1結論……………………………………………………………………………91 5.1未來工作………………………………………………………………………92 參考文獻……………………………………………………………………………93 自述…………………………………………………………………………………97

    [1]柯賢文,未來的氫能經濟.科學發展, pp.399, 68–75, 2006.
    [2] J. L. Schnoor, “A hydrogen-fueled economy,” Environmental Science & Technology, 2004.
    [3] “Office of Basic Energy Sciences, Basic research needs for the hydrogen economy,” U.S. Department of Energy, http://www.sc.doe.gov/bes/hydrogen.pdf, 2003.
    [4] “Office of Hydrogen, Fuel Cells, and Infrastructure Technologies, Multi-Year Research, Development and Demonstration Plan,” U.S. Department of Energy, http://www.eere. energy.gov/hydrogenandfuelcells/mypp/, 2003.
    [5] M. Momirlan and T. Veziroglu, “Recent directions of world hydrogen production,” Renew¬able and Sustainable Energy Reviews, pp. 219-231, 1999.
    [6] M. Campbell and K. Schultz, “Fusion as a source for hydrogen production,” 25th Annual Fusion Power Associates Meeting.
    [7] L. Becker, “Hydrogen Storage,” Discovery guides, http://www.csa.com/ discoveryguides/hydrogen/overview.php.
    [8] J. Zhang and T. S. Fisher, “A review of heat transfer issues in hydrogen storage technolo¬gies,” J. Heat Transfer, 127, pp. 1391-1399, 2005.
    [9] T. S. Yang, M. L. Tsai, and D. S. Ju, “Effects of exit-pressure variation on the hydro-gen supply characteristics of metal hydride reactors,” International Journal of Hydrogen Energy, (DOI: 10.1016/j.ijhydene.2010.04.175).
    [10] T. S. Yang and M. L. Tsai, “On the selection of metal-foam volume fraction for hydriding¬time minimization of metal hydride reactors,” International Journal of Hydrogen Energy, 2010.
    [11]朱鼎舜,“釋氫壓力控制對金屬儲氫罐供氫性能的影響,”國立成功大學機械所,碩士論文, 2008.
    [12]崔瑋麟,“金屬氫化物顆粒儲氫性能之裡論建模與數值模擬,”國立成功大學機械所,碩士論文, 2010.
    [13] A. K. Phate, M. P. Maiya, and S. S. Murthy, “Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds,” International Journal of Hydrogen Energy, 32, pp. 1969-1981, 2007.
    [14] F. Laurencelle and J. Goyette, “Simulation of heat transfer in a metal hydride reactor with aluminum foam,” International Journal of Hydrogen Energy, 32, pp. 2957-2964, 2007.
    [15] F. Yang, X. Meng, J. Deng, Y. Wang, and Z. Zhang, “Identifying heat and mass transfer characteristics of metal hydride reactor during adsorption-parameter analysis and numer¬ical study,” International Journal of Hydrogen Energy, 33, pp. 1014-1022, 2008.
    [16] X. Shan, H. Payer, and S. Wainright, “Improved durability of hydrogen storage alloys,” J. Alloys and Compounds, 430, pp. 262-268, 2007.
    [17] S. Hana, X. Zhang, S. Shi, H. Tanaka, N. Kuriyama, N. Taoka, K. Aihara, and Q. Xu, “Experimental and theoretical investigation of the cycle durability against CO and degra¬dation mechanism of the LaNi5 hydrogen storage alloy,” J. Alloys and Compounds, 46-447, pp. 208-211, 2007.
    [18] A. Jemni and S. B. Nasrallah, “Study of two-dimensional heat and mass transfer dur¬ing absorption in a metal-hydrogen reactor,” International Journal of Hydrogen Energy, vol. 20, No. 1, pp. 43-52, 1995.
    [19] A. Jemni and S. B. Nasrallah, “Study of two-dimensional heat and mass transfer dur¬ing desorption in a metal-hydrogen reactor,” International Journal of Hydrogen Energy, vol. 20, No. 11, pp. 881-891, 1995.
    [20] A. Jemni and S. B. Nasrallah, “Heat and mass transfer models in metal-hydrogen reactor,” International Journal of Hydrogen Energy, vol. 22, No. 1, pp. 67-76, 1997.
    [21] A. Jemni, S. B. Nasrallah, and J. Lamloumi, “Experimental and theoretical study of a metal-hydrogen reactor,” International Journal of Hydrogen Energy, vol. 24, pp. 631-644, 1999.
    [22] F. Askri, A. Jemni, and S. B. Nasrallah, “Study of two-dimensional and dynamic heat and mass transfer in a metal-hydrogen reactor,” International Journal of Hydrogen Energy, vol. 28, pp. 537-557, 2003.

    [23] F. Askri, A. Jemni, and S. B. Nasrallah, “Dynamic behavior of metal-hydrogen reactor during hydriding process,” International Journal of Hydrogen Energy, vol. 29, pp. 635-647, 2004.
    [24] F. Askri, Jemni, and S. B. Nasrallah, “Prediction of transient heat and mass transfer in a closed metal-hydrogen reactor,” International Journal of Hydrogen Energy, vol. 29, pp. 195-208, 2004.
    [25] H. Dhaou, F. Askri, M. B. Salah, A. Jemni, S. B. Nasrallah, and J. Lamloumi, “Measure¬ment and modeling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds,” International Journal of Hydrogen Energy, vol. 32, pp. 576-587, 2007.
    [26] U. Mayer, M. Groll, and W. Supper, “Heat and mass transfer in metal hydride reaction beds: Experimental and theoretical results,” J. the Less-Common Metals, vol. 131, pp. 235-244, 1987.
    [27]陳建瑞,“高儲氫量鎂基複合材料之研究,”國立清華大學材料學與工程研究所,碩士論文, 2004.
    [28] T. Gramham Phil. trans. Roy. Soc. London, 156399, 1866.
    [29]廖世傑,“儲氫技術及應用簡介,”工業材料, vol. 190, pp.139,2002.
    [30] K. Hoffman, W. Winsche, R. Wiswall, J. Reilly, T. Sheehan, and C. Waide, “International Automotive Engineering congress,” Detroit, 1969.
    [31] F. Kuijpers, “Hydrogen Sorption Properties of The La1-xCaxNi5 and La(Ni1-xCux)5System,” Philips Res. Rep. Suppl., vol. 28, pp.1, 1973.
    [32] J. Reilly, R. Wiswall, and I. Chem. vol. 13, pp.218, 1974.
    [33]林美姿,“儲氫合金之開發與應用,”材料與社會, vol. 81, pp.61,1993.
    [34]閻正剛,“能源與科技-地球未來最有潛力的新能源,”氫能源, http://www.ch.ntu.edu. tw/~rsliu/pdf97/material/1.pdf.
    [35] G. Sandrock, “A Panoramic Overview of Hydrogen Storage Alloys From a Gas Reaction Point of View,” J. Alloys Comp, vol. 293-295, pp.877, 1999.
    [36]周明弘,“儲氫材料 Mg2Ni生長動力學之研究,”國立中央大學材料科學與工程研究所,碩士論文, 2007.
    [37]劉如熹, “Synthesis and Study of New Materials Using High Pressure,”行政院國家科學委員會專題研究計畫成果報告,台灣大學化學系, 2003.
    [38] M. Jurczyk, L. Smardz, and K. Smardz, “Nanocrystalline LaNi5-type Electrode Materials for Ni-MHx Batteries,” J. Solid State Chem., vol. 171, pp.30, 2003.
    [39] A. Zaluska, L. Zaluski, and J. Strom-Olsen, “Nanocrystalline magnesium for hydrogen storage,” Alloys Comp., vol. 288, pp.217, 1999.
    [40] B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage : A review,” International Journal of Hydrogen Energy, vol. 32, pp.1121, 2007.
    [41] R. Ferro and A. Saccone, “Material Science and Technology,” Stracture of Solid, V. Gerold¬cedl, VCH, Weinheim, Germany, vol. 1, pp.198.
    [42]劉文海,“鋁合金潛力產品與前景分析,”金屬中心, 2004.
    [43] S. Mellouli, H. Dhaou, F. Askri, A. Jemni, and S. B. Nasrallah, “Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger,” International Journal of Hydrogen Energy, 34(23):9393-9401, 2009.
    [44] F. Wang and V. Tarabara, “Permeability of fiber-filled porous media: Kozeny-Carman-Ethier modeling approach,” Environmental Engineering Science, 34(23):9393-9401, 2009.
    [45] M. Kaviany, “Principles of Heat Transfer in Porous Media,” New York: Springer, 2nd edn, 1999.

    下載圖示 校內:2013-07-04公開
    校外:2013-07-04公開
    QR CODE