| 研究生: |
曾耀民 Tseng, Yao-Min |
|---|---|
| 論文名稱: |
高頻GPS資料解算之分析:以2013年規模6.5南投地震為例 High-rate GPS analysis on the 2013 ML 6.5 Nantou earthquake |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 南投地震 、空間濾波法 、GPS連續站 、卡曼濾波 |
| 外文關鍵詞: | Nantou earthquake, Spatial filtering, Kalman filter, GPS stations |
| 相關次數: | 點閱:83 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣目前已有200多個高頻GPS連續站觀測資料和600多個強震儀,分布相當密集,在地震發生的時候可以提供相當豐富的資料。結合1 Hz GPS位移及地震儀200 Hz加速度這兩種資料來探討對於地震學研究之可行性。我們以2013年6月2日規模6.5,震源深度15.4公里南投地震為例,嘗試來求得其同震位移以及地震波形。在GPS部分使用相對定位及精密單點定位去得到每時刻之動態座標解。在相對定位的部分,一般都是使用長基線做為參考站,在此我們使用了長基線及短基線的參考站去作解算,同時使用空間濾波來比較兩者結果是否相同。地震儀的在積分成位移的過程,我們使用了三種方法:高通濾波、基線改正、卡曼濾波。來消除地震儀積分時所產生的基線偏移。從GPS及地震儀處理過後所得到的波形,我們可以獲得相當一致的波形,兩者最大不同在於GPS我們是使用1 Hz資料,地震儀則是有200 Hz得取樣率,在南投地震中GPS站S167的東西向最大震幅約20 mm,但地震儀的最大震幅將近有50 mm,200 Hz確實能夠得到更多的地震資訊,可以彌補GPS在取樣率上的不足,但是在同震位移上地震儀仍是無法得到與GPS相同的成果,而在波形上則有相當好的一致性。從南投地震所獲得的GPS及地震儀位移時間序列去做震波傳遞圖,我們發現離震央的西北方向及西南方向的震波有較長時間延續之地震波現象出現。
There are more than 200 GPS stations and 600 seismometers in Taiwan. The distribution is quite dense and when the earthquake happens, it can provide abundant information. We discuss the feasibility in seismology which combines 1 Hz GPS with 200 hz seismometer. We try to obtain co-seismic displacement and seismic wave during the time period of the 2 June 2013 ML 6.5 Nantou earthquake. We apply not only relative positioning technique but also precise point positioning technique to obtain time series. We use reference stations which includes lone-baseline and short-baseline in relative positioning technique. Using spatial filtering to improve the time series. To avoid baseline errors, we measure by three methods which Low-Cut Filters, baseline-correction, kalmans filters to integrate. We acquire similar seismic displacement wave from GPS and integrated seismometer. The difference between GPS and seismometer is that the former is 1 Hz and the later is 200 Hz. The amplitude of station S167 is 20 mm in GPS but the amplitude in seismometer is 50 mm. From the result we can conquer the problem of GPS sampling rate by using 200 Hz seismometer but seismometer can not obtain the same coseismic displacement with GPS. From the displacement estimated for GPS and seismometer are stacked according to epicentral distance we find that the southwest and northeast of the epicenter has later phases.
洪煌凱(2013),台灣GPS連續觀測站之時間序列噪訊分析及其在地震學研 究,國立成功大學地球科學研究所博士論文。
謝光紀(2012),高取樣率GPS定位精度分析,國立成功大學地球科學研究所碩 士論文。
Agnew, D. C., and K. M. Larson (2006), Finding the repeat times of the GPS constellation, GPS Solutions, 11(1), 71-76, doi:10.1007/s10291-006-0038-4.
Bock, Y., D. Melgar, and B. W. Crowell (2011), Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers, Bulletin of the Seismological Society of America, 101(6), 2904-2925, doi:10.1785/0120110007.
Bock, Y., R. M. Nikolaidis, and P. J. d. Jonge (2000), Instantaneous geodetic positioning at medium distanceswith the Global Positioning System, Journal of Geophysical Research, 105(B12), 28223-28253, doi:10.1029/2000JB900268.
Boore, D. M. (2005), On Pads and Filters: Processing Strong-Motion Data, Bulletin of the Seismological Society of America, 95(2), 745-750, doi:10.1785/0120040160.
Choi, K., A. Bilich, K. M. Larson, and P. Axelrad (2004), Modified sidereal filtering: Implications for high-rate GPS positioning, Geophysical Research Letters, 31(22), L22608, doi:10.1029/2004GL021621.
Chuang, R. Y., K. M. Johnson, Y. M. Wu, K. E. Ching, and L. C. Kuo (2013), A midcrustal ramp-fault structure beneath the Taiwan tectonic wedge illuminated by the 2013 Nantou earthquake series, Geophysical Research Letters, 40(19), 5080-5084, doi:10.1002/grl.51005.
Colosimo, G. (2012) VADASE—Variometric Approach for
Displacement Analysis Stand-Alone Engine, Ph.D. dissertation, University of Rome,Rome, Italy.
Herring, T., R. King, and S. McClusky (2008), Introduction to GAMIT/GLOBK, Mass. Inst. of Technol., Cambridge, Mass.
Hung, H. K., and R. J. Rau (2013), Surface waves of the 2011 Tohoku earthquake: Observations of Taiwan's dense high-rate GPS network, Journal of Geophysical Research, 118(1), 332-345, doi:10.1029/2012jb009689.
Iwan, W. D., M. A. Moser, and C. Y. Peng (1985), Some observations on strong-motion earthquake measurement using a digital accelerograph, Bulletin of the Seismological Society of America, 75(5), 1225-1246.
Larson, K. M. (2009), GPS seismology, Journal of Geodesy, 83(3-4), 227-233, doi:10.1007/s00190-008-0233-x.
Larson, K. M., P. Bodin, and J. Gomberg (2003), Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake, Science, 300(5624), 1421-1424, doi:10.1126/science.1084531.
Lin, A. T. and A. B. Watts (2002), Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, Journal of Geophysical Research., 107(B9), 2185, doi:10.1029/2001JB000669.
Miyazaki, S. i., K. M. Larson, K. Choi, K. Hikima, K. Koketsu, P. Bodin, J. Haase, G. Emore, and A. Yamagiwa (2004), Modeling the rupture process of the 2003 September 25 Tokachi‐Oki (Hokkaido) earthquake using 1‐Hz GPS data, Geophysical Research Letters, 31(21), doi:10.1029/2004gl021457.
Ohta, Y., T. Kobayashi, H. Tsushima, S. Miura, R. Hino, T. Takasu, H. Fujimoto, T. Iinuma, K. Tachibana, T. Demachi, T. Sato, M. Ohzono, and N. Umino (2012), Quasi real‐time fault model estimation for near‐field tsunami forecasting based on RTK‐GPS analysis: Application to the 2011 Tohoku‐Oki earthquake (Mw 9.0), Journal of Geophysical Research, 117(B2), doi:10.1029/2011jb008750.
Segall, P., and J. L. Davis (1997), GPS applications for geodynamics and earthquake studies, Annual Review of Earth and Planetary Sciences, 25(1), 301-336.
Takasu, T., and A. Yasuda (2009), Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB, paper presented at International Symposium on GPS/GNSS, International Convention Center Jeju, Korea.
Takasu, T., N. Kubo, and A. Yasuda (2007), Development, evaluation and application of rtklib: A program library for rtk-gps, paper presented at GPS/GNSS symposium, Tokyo, Japan, 20-22 November.
Wang, R., B. Schurr, C. Milkereit, Z. Shao, and M. Jin (2011), An Improved Automatic Scheme for Empirical Baseline Correction of Digital Strong-Motion Records, Bulletin of the Seismological Society of America, 101(5), 2029-2044, doi:10.1785/0120110039.
Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, Journal of Geophysical Research, 102, 18057–18070.
Wells, D. E., N. Beck, D. Delikaraoglou, A. Kleusberg, E. Krakiwsky, G. Lachapelle, R. Langley, M. Nakiboglu, K.-P. Schwarz, and J. Tranquilla (1999), Guide to GPS positioning.
Wu, Y. M., and C. F. Wu (2007), Approximate recovery of coseismic deformation from Taiwan strong-motion records, Journal of Seismology, 11(2), 159-170, doi:10.1007/s10950-006-9043-x.
Yin, H., and S. Wdowinski (2013), Improved detection of earthquake-induced ground motion with spatial filter: case study of the 2012 M = 7.6 Costa Rica earthquake, GPS Solutions, doi:10.1007/s10291-013-0353-5.
Zumberge, J. F. (1999), Automated GPS data analysis service, GPS solutions, 2(3), 76-78.
Zumberge, J. F., M. B. Heflin, D. C. Jefferson, M. M. Watkins, and F. H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, 102(B3), 5005-5017, doi:10.1029/96jb03860.