| 研究生: |
洪瑞聲 HUNG, JUI-SHENG |
|---|---|
| 論文名稱: |
絕緣封閉箱內之矩形鰭片上的熱傳特性預測 Estimation of Heat Transfer Characteristics on a Rectangular Fin in an Insulated Enclosure |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 絕緣封閉 、矩形鰭片 、平均熱傳係數 、鰭片間距 |
| 外文關鍵詞: | fin spacing, average convection heat-transfer coefficient, rectangular fin, insulated enclosure |
| 相關次數: | 點閱:201 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文乃以有限差分法(Finite-difference method)並配合最小平方法(Least-squares scheme)及溫度量測值在絕緣封閉箱內來估算矩形鰭片上之平均熱傳係數(Average heat-transfer coefficient)、總熱傳量(Total heat transfer rate)和鰭片效率(Fin efficiency)。由於鰭片上的熱傳係數並非均勻。為了預測鰭片上之熱傳係數,因此整個鰭片分割成六個小區域及八個小區域,並假設每個區域上之熱傳係數為常數。結果顯示,平均熱傳係數會隨著鰭片間距增加而提高,卻隨鰭片高度增加而減小。此外並顯示鰭片分割成六個小區域之熱傳特性近似於八個小區域之值。本文所估算之平均熱傳係數與相關文獻之經驗公式相比較,以驗證本文逆算法之準確性及經驗公式之合理性。
The present study applies the finite-difference method in conjunction with the least-squares scheme and measured temperatures to estimate the average convection heat-transfer coefficient, total heat-transfer rate and fin efficiency on a vertical rectangular fin in an insulated enclosure. The heat-transfer coefficient on this rectangular fin is very non-uniform. In order to predict the average heat-transfer coefficient on a plate fin, the whole plate fin is divided to six and eight sub-regions. The heat-transfer coefficient on those sub-regions is assumed to be constant. The results show that the average heat-transfer coefficient increases with increasing the fin spacing and decreases with increasing the fin height. In addition, the heat-transfer characteristics of the fin divided into six sub-regions can approach values of the fin divide into eight sub-regions. In order to demonstrate the accuracy and reliability of the present inverse scheme, a comparison of the average heat-transfer coefficient between the present predicated results and those obtained from correlation recommended by current textbook is made.
[1] T.E. Schmidt, “ Heat transfer calculations for extended surfaces, ” Refrigerating Engineering, pp. 351-3570, 1949.
[2] J.V. Beck, “ Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer,” Vol. 62, pp. 46-51, 1962.
[3] J.V. Beck, “Surface heat flux determination using an integral method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
[4] E.M. Sparrow, A. Haji-Sheikh and T.S. Lundgern, “The inverse problem in transient heat conduction,” J. Appl. Mech., Vol. 86, pp. 369-375, 1964.
[5] J.V. Beck, Litkouhi B., and St. Clair C. R., “Efficient sequential solution of nonlinear inverse heat conduction problem,” Numer. Heat Transfer, Vol. 5, pp. 275-286, 1982.
[6] R.G .Arledge, and Haji-Sheikh, A., “A iterative approach to the solution of inverse heat conduction problem,” Numer . Heat Transfer,Vol. 1, pp.365-376, 1978.
[7] K.W, Woo and L.C, chow , “inverse heat conduction by direct inverse Laplace transform,” Numer. Heat Transfer, Vol. 4,pp.499-504, 1981.
[8] M. Raynaud. , and J.V, Beck. , “Methodology for comparison of inverse heat conduction methods,”ASME J. Heat Transfer, 1988.
[9] N.M, Alnajem, and M. N., Özisik , “A direct analytical approach for solving linear inverse heat conduction problems,” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985.
[10] E.P, Scott, and J.V, Beck, “ Analysis of order of the sequential regulation solutions of heat conduction problem,” ASME J.Heat Transfer, Vol. 111, pp.218-224, 1989.
[11] J.V, Beck, ,and D.A, Murio. , “Combined function specification regularization procedure for solution of inverse heat conduction problem,” AIAA Journal., Vol, 24 No.180-185, 1986.
[12] S.Ostrach, “Laminar natural-convection flow and heat transfer of fluids with and without heat sources in channels with constant wall temperatures,” NACA Tech. Note 2863, 1952.
[13] J.R. Bodoia and J.F. Osterle, “ The development of free convection between heated vertical plates,” ASME J. Heat Transfer, Vol. 84, pp. 40-44, 1962.
[14] O.M. Alifanov, “Solution of an inverse problem of heat conduction by iteration method ,” J. Eng .Phys. , Vol.26 , No4 , pp. 471-476 , 1974.
[15] S. Sunil, J. R. N. Reddy, C. B. Sobhan , “Natural convection heat transfer from a thin rectangular fin with a line sourse at the base – a finite difference solution,” Heat Mass Transfer Vol. 31, pp. 127-135, 1996.
[16] J. Deans and J. Neale, “The Use of effectiveness concepts to Calculate the Thermal Resistance of Parallel Plate Heat Sinks,” Heat Transfer Engineering Vol. 27, pp. 56-67, 2006.
[17] C.D. Jones and L.F. Smith, “ Optimun arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer,” ASME J. Heat Transfer, pp. 6-10, 1970.
[18] S.Lee, “Optimum Design and Selection of Heat Sinks,” Proceedings of 11th IEEE Semi-Term Symposium, pp. 48-54, 1995.
[19] 張文奎,散熱鰭片擴散熱阻之分析,國立清華大學工程與系統科學研究所,碩士碩文,2002。
[20] 劉建佳,Pentium 4 散熱模組底板具凸起物之散熱性能研究, 國立台灣科技大學機械工程研究所,碩士論文,2002。
[21] H.T. Chen , J.P. Song, and Y.T. Wang, “Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers,” Int. J. Heat Mass Transfer, Vol. 48, pp. 2697-2707, 2005.
[22] H.T. Chen and J.C. Chou, “Investigation of natural-convection heat transfer coefficient form the vertical fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer, Vol. 49, pp. 3034-3044, 2006.
[23] F. Kreith and M.S. Bohn, “Principles of Heat Transfer,” 5th ed., west Publishing Company , Chap 5, pp. 349-350, 1993.
[24] V. S. Arpaci, “Introduction to Heat Transfer,” pp.580, 1999.
[25] A. Bejan, “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62, 1993.
[26] F. E. M. Saboya and E. M. Sparrow, “Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations,” ASME Journal of Heat Transfer, Vol.96, pp.265-272, 1974.
[27] 劉立熙,根據實驗溫度量測值估算矩形鰭片上之熱傳特性,國立成功大學機械工程所,碩士碩文, 2006。
[28] G.D. Raithby and K.G.T. Hollands, “Natural Convection,” in Handbook of Heat Transfer Fundamentals, 2nd ed., W.M. Rohsenow, J.P. Hartnett and E.N. Ganic, eds, McGraw-Hill, New York, 1985.
[29] K. Raznjevic, “ Handbook of Thermodynamic Tables and Charts,” McGraw-Hill , New York , 1976.
[30] F. Harahap and E. Rudianto, “ Measurements of steady-state heat dissipation from miniaturized horizontally-based straight rectangular fin arrays,” Heat Mass Transfer Vol. 41, pp. 280-288, 2005.
[31] S.A. Nada, “Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate,” Int. J. Heat Mass Transfer, Vol. 50, pp. 667-679, 2007.