| 研究生: |
卜俊 Bu, Jyun |
|---|---|
| 論文名稱: |
藉由鉑奈米顆粒修飾氧化鋅奈米棒用於pH感測器應用的製造和研究 Fabrication and Investigation of Enhanced Platinum Nanoparticles-Modified ZnO Nanorods for pH Sensing Applications |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 氧化鋅奈米柱 、pH感測器 、白金奈米顆粒 、水溶液法 、延伸閘極場效電晶體 |
| 外文關鍵詞: | Zinc Oxide Nanorods, pH Sensor, Platinum Nanoparticles, Aqueous Solution Method, EG-FET |
| 相關次數: | 點閱:54 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今為止,pH感測器在環境監測、醫學診斷和工業流程等多個領域都有著重要的應用。儘管傳統的玻璃電極pH感測器可靠,但其易碎、微型化程度有限以及反應時間較長等問題仍待解決。因此研究可微型化的pH感測器是目前的主流。
一、
本篇的研究內容為製作氧化鋅奈米棒作為pH感測器,因為其具有堅固、可擴展且反應速度更快的特性,也因其獨特的性質如高電子遷移率、寬能帶差和大的激子束縛能量,而被廣泛研究。儘管如此,氧化鋅也存在著本質的缺陷,例如在某些極端的pH環境下,氧化鋅奈米棒可能會發生溶解或者結構變形,這會影響到感測器的穩定性和壽命。為了改善氧化鋅在物理上的限制,許多研究趨向於在氧化鋅不同架構下的表面以金屬奈米顆粒或有機聚合物做為表面修飾,本實驗選擇適用白金奈米顆粒濺鍍於奈米柱狀表面,並比較在不同酸鹼溶液中pH感測器的靈敏度和線性度。而本篇實驗室以擴展閘極場效應電晶體(EG-FET)的架構下進行量測。
首先,我們使用簡易的水溶液法進行了氧化鋅柱的成長,並經過一次退火,再以控制時間參數的方式鍍上不同數量的白金奈米顆粒於柱的表面,在氧化鋅奈米棒表面添加白金奈米顆粒,不僅提供了更多的活性位點,也增強了其對pH變化的靈敏度,也提高了其導電性,進一步提升了氧化鋅奈米棒作為pH感測器的性能。
實驗量測結果得知,柱狀的氧化鋅樣品其平均電流和電壓靈敏度為15.1?A pH-1 和48.1mV pH-1 另外線性曲線分別是0.946和0.964,而在經過白金的表面修飾後得到的平均電流和電壓最好的結果為91.3 ?A pH-1 和79.1 mV pH-1 對應到的線性度為0.968和0.991。此外,在Pt / ZnO NRs的樣品中都具有優越的輸出電壓響應,這說明了這些裝置作為pH感測器的可實行性。
Currently, pH sensors play a crucial role in various fields, including food safety monitoring, blood acid-base analysis and environmental analysis. Despite the reliability of traditional glass electrode pH sensors, issues such as fragility, limited miniaturization, and longer response time remain unsolved. Therefore, research on miniaturized pH sensors is currently mainstream.
This study focuses on the fabrication of Zinc Oxide (ZnO) nanorods as pH sensors due to their robust, scalable, and faster response characteristics. Owing to its unique properties such as high electron mobility, wide bandgap, and large exciton binding energy, ZnO has been widely studied. However, inherent defects in ZnO exist. For instance, ZnO nanorods may dissolve or deform structurally under certain extreme pH conditions, affecting the stability and lifespan of the sensor. To improve the physical limitations of ZnO, many studies tend to surface-modify different ZnO structures with metal nanoparticles or organic polymers. In this experiment, platinum nanoparticles were chosen for sputtering on the nanocolumn surface, and the sensitivity and linearity of the pH sensor in different acid-base solutions were compared. This experiment was conducted under the extended gate field-effect transistor (EG-FET) structure.
Initially, we grew the ZnO columns using a simple aqueous solution method, followed by annealing, and then sputtered different amounts of platinum nanoparticles on the column surface by controlling the time parameters. Adding platinum nanoparticles to the surface of ZnO nanorods not only provides more active sites but also enhances their sensitivity to pH changes, improves their conductivity, and further enhances the performance of ZnO nanorods as pH sensors.
The experimental measurement results show that the average current and voltage sensitivity of the columnar ZnO samples are 15.1 ?A pH-1 and 48.1 mV pH-1, respectively, and the linearity curves are 0.946 and 0.964, respectively. After platinum surface modification, the best average current and voltage obtained are 91.3 ?A pH-1 and 79.1 mV pH-1, corresponding to linearity of 0.968 and 0.991. Moreover, the Pt / ZnO NRs samples all have superior output voltage responses, demonstrating the feasibility of these devices as pH sensors.
[1] Ahmed, N. M., Sabah, F. A., Al-Hardan, N. H., Almessiere, M. A., Mohammad, S. M., Lim, W. F., ... & Afzal, N. “Development of EGFET-based ITO pH sensors using epoxy free membrane. Semiconductor Science and Technology”, 36(4), 045027, 2021.
[2] Baranwal, J., Barse, B., Gatto, G., Broncova, G., & Kumar, A. “Electrochemical sensors and their applications: A review. Chemosensors”, 10(9), 363, 2022.
[3] Kurzweil, P. “Metal oxides and ion-exchanging surfaces as pH sensors in liquids: State-of-the-art and outlook”. Sensors, 9(6), 4955-4985, 2009.
[4] Choi, Y. S., Kang, J. W., Hwang, D. K., & Park, S. J. “Recent advances in ZnO-based light-emitting diodes”. IEEE Transactions on electron devices, 57(1), 26-41, 2009.
[5] Tereshchenko, A., Bechelany, M., Viter, R., Khranovskyy, V., Smyntyna, V., Starodub, N., & Yakimova, R. “Optical biosensors based on ZnO nanostructures: advantages and perspectives”. A review. Sensors and Actuators B: Chemical, 229, 664-677, 2016.
[6] Gao, W., & Li, Z. “ZnO thin films produced by magnetron sputtering”. Ceramics International, 30(7), 1155-1159, 2004.
[7] Zou, A. L., Qiu, Y., Yu, J. J., Yin, B., Cao, G. Y., Zhang, H. Q., & Hu, L. Z. “Ethanol sensing with Au-modified ZnO microwires”. Sensors and Actuators B: Chemical, 227, 65-72, 2016.
[8] Kim, S., Park, S., Park, S., & Lee, C. “Acetone sensing of Au and Pd-decorated WO3 nanorod sensors”. Sensors and Actuators B: Chemical, 209, 180-185, 2015.
[9] Wang, Y., Liu, B., Cai, D., Li, H., Liu, Y., Wang, D., ... & Wang, T. “Room-temperature hydrogen sensor based on grain-boundary controlled Pt decorated In2O3 nanocubes”. Sensors and Actuators B: Chemical, 201, 351-359, 2014.
[10] Jin, W., Yan, S., Chen, W., Yang, S., Zhao, C., & Dai, Y. “Preparation and gas sensing property of Ag-supported vanadium oxide nanotubes”. Functional Materials Letters, 7(03), 1450031, 2014.
[11] Şennik, E., Alev, O., & Öztürk, Z. Z. “The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods”. Sensors and Actuators B: Chemical, 229, 692-700, 2016.
[12] Salunkhe, R. R., Dhawale, D. S., Patil, U. M., & Lokhande, C. D. “Improved response of CdO nanorods towards liquefied petroleum gas (LPG): effect of Pd sensitization”. Sensors and Actuators B: Chemical, 136(1), 39-44, 2009.
[13] Young, S. J., Chu, Y. J., & Chen, Y. L. “Enhancing pH sensors performance of ZnO nanorods with Au nanoparticles adsorption”. IEEE Sensors Journal, 21(12), 13068-13073, 2021.
[14] Chu, Y. L., Young, S. J., Tsai, S. H., Arya, S., & Chu, T. T. “High Sensitivity of Extended-Gate Field-Effect Transistors Based on 1-D ZnO: Ag Nanomaterials through a Cheap Photochemical Synthesis as pH Sensors at Room Temperature”. ACS Applied Electronic Materials, 6(2), 712-723, 2024.
[15] Chu, Y. L., Young, S. J., Chu, T. T., Khosla, A., Chiang, K. Y., & Ji, L. W. “Improvement of the UV-sensing performance of Ga-doped ZnO nanostructures via a wet chemical solution at room temperature”. ECS Journal of Solid State Science and Technology, 10(12), 127001, 2021.
[16] Paul Shylendra, S., Wajrak, M., & Alameh, K. “Fabrication and optimization of nafion as a protective membrane for TiN-based pH sensors”. Sensors, 23(4), 2331, 2023.
[17] Zhang, H. Z., Sun, X. C., Wang, R. M., & Yu, D. P. “Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass”. Journal of crystal growth, 269(2-4), 464-471, 2004.
[18] Zayer, N. K., Greef, R., Rogers, K., Grellier, A. J. C., & Pannell, C. N. “In situ monitoring of sputtered zinc oxide films for piezoelectric transducers”. Thin Solid Films, 352(1-2), 179-184, 1999.
[19] Gorla, C. R., Emanetoglu, N. W., Liang, S., Mayo, W. E., Lu, Y., Wraback, M., & Shen, H. “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition”. Journal of Applied Physics, 85(5), 2595-2602, 1999.
[20] Kaid, M. A., & Ashour, A. “Preparation of ZnO-doped Al films by spray pyrolysis technique”. Applied surface science, 253(6), 3029-3033, 2007.
[21] Sun, Y., Fuge, G. M., & Ashfold, M. N. “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods”. Chemical Physics Letters, 396(1-3), 21-26, 2004.
[22] Zheng, M. J., Zhang, L. D., Li, G. H., & Shen, W. Z. “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”. Chemical Physics Letters, 363(1-2), 123-128, 2002.
[23] Liu, Z., Lei, E., Ya, J., & Xin, Y. “Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers”. Applied Surface Science, 255(12), 6415-6420, 2009.
[24] Khusaimi, Z., Amizam, S., Mamat, M. H., Sahdan, M. Z., Ahmad, M. K., Abdullah, N., & Rusop, M. “Controlled growth of zinc oxide nanorods by aqueous-solution method”. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 40(3), 190-194, 2010.
[25] Cao, G. S., Juan Zhang, X., Su, L., & Yang Ruan, Y. “Hydrothermal synthesis of selenium and tellurium nanorods”. Journal of Experimental Nanoscience, 6(2), 121-126, 2011.
[26] Alkanad, K., Hezam, A., Al-Zaqri, N., Bajiri, M. A., Alnaggar, G., Drmosh, Q. A., ... & Neratur Krishnappagowda, L. “One-step hydrothermal synthesis of anatase TiO2 nanotubes for efficient photocatalytic CO2 reduction”. ACS omega, 7(43), 38686-38699, 2022.
[27] Tang, J. F., Sie, Y. D., Tseng, Z. L., Lin, J. H., Chen, L. C., & Hsu, C. L. “Perovskite quantum dot–ZnO nanowire composites for ultraviolet–visible photodetectors”. ACS Applied Nano Materials, 5(5), 7237-7245, 2022.
[28] Krehula, S., & Musić, S. “Hydrothermal synthesis of platinum group metal nanoparticles”. Croatica chemica acta, 84(4), 465-468, 2011.
[29] Zhao, J. G., Liu, S. J., Yang, S. H., & Yang, S. G. “Hydrothermal synthesis and ferromagnetism of CuO nanosheets”. Applied surface science, 257(22), 9678-9681, 2011.
[30] Yushan, L., Wei, L., Peng, W., & Shouxin, L. “Preparation and applications of carbon quantum dots prepared via hydrothermal carbonization method”. Progress in Chemistry, 30(4), 349, 2018.
[31] Wang, L., Ma, W., Li, Y., & Cui, H. “Synthesis of δ-MnO2 with nanoflower-like architecture by a microwave-assisted hydrothermal method”. Journal of Sol-Gel Science and Technology, 82, 85-91, 2017.
[32] Pullano, S. A., Critello, C. D., Mahbub, I., Tasneem, N. T., Shamsir, S., Islam, S. K., ... & Fiorillo, A. S. “EGFET-based sensors for bioanalytical applications: A review”. Sensors, 18(11), 4042, 2018.
[33] Kim, J., Liu, Q., & Cui, T. “Solution-gated nitrate sensitive field effect transistor with hybrid film: CVD graphene/polymer selective membrane”. Organic Electronics, 78, 105551, 2020.
[34] Andersen, J. R., Borggaard, C., Rasmussen, A. J., & Houmøller, L. P. “Optical measurements of pH in meat”. Meat Science, 53(2), 135-141, 1999.
[35] Kuo, P. Y., Chang, C. H., Lai, W. H., & Wang, T. H. “The Characteristics Analysis of a Microfluid-Based EGFET Biosensor with On-Chip Sensing Film for Lactic Acid Detection”. Sensors, 22(15), 5905, 2022.
[36] Kao, W. S., Yu, L. S., & Lin, C. H. “Rapid Fluorescence-Free Detection of DNA Loop-Mediated Isothermal Amplification on Bare ITO Surface Under EG-FET Scheme”. IEEE Sensors Journal, 23(13), 13876-13881, 2023.
[37] Shibata, K., & Nakamura, A. “An extended gate field-effect transistor (EG-FET) type non-enzymatic glucose sensor with inkjet-printed copper oxide nanoparticles”. SN Applied Sciences, 4(10), 253, 2022.
[38] https://www.elprocus.com/ion-sensitive-field-effect-transistor-isfet-working-principle/
[39] Chu, Y. L., Young, S. J., Tsai, S. H., Arya, S., & Chu, T. T. “High Sensitivity of Extended-Gate Field-Effect Transistors Based on 1-D ZnO: Ag Nanomaterials through a Cheap Photochemical Synthesis as pH Sensors at Room Temperature”. ACS Applied Electronic Materials, 6(2), 712-723, 2024.
[40] Reddy, N. K., Ahsanulhaq, Q., & Hahn, Y. B. “Influence of RTA treatment on the physical properties of well-aligned ZnO nanorods”. Physica E: Low-dimensional Systems and Nanostructures, 41(3), 368-372, 2009.
[41] Chu, Y. L., Young, S. J., Ji, L. W., Tang, I. T., & Chu, T. T. “Fabrication of ultraviolet photodetectors based on Fe-doped ZnO nanorod structures”. Sensors, 20(14), 3861, 2020.
[42] Gama-Lara, S. A., Natividad, R., Vilchis-Nestor, A. R., López-Castañares, R., García-Orozco, I., Gonzalez-Pedroza, M. G., & Morales-Luckie, R. A. “Ultra-small platinum nanoparticles with high catalytic selectivity synthesized by an eco-friendly method supported on natural hydroxyapatite”. Catalysis Letters, 149, 3447-3453, 2019.
[43] Paul Shylendra, S., Wajrak, M., & Alameh, K. “Fabrication and optimization of nafion as a protective membrane for TiN-based pH sensors”. Sensors, 23(4), 2331, 2023.
[44] Chen, C., Zhang, Y., Gao, H., Xu, K., & Zhang, X. “Fabrication of functional super-hydrophilic TiO2 thin film for pH detection”. Chemosensors, 10(5), 182, 2022.
[45] Chen, C. H., Liu, S. B., & Chang, S. P. “Fabrication and characterization of In0. 9Ga0. 1O EGFET pH sensors”. Coatings, 11(8), 929, 2021.
[46] Li, H. H., Yang, C. E., Kei, C. C., Su, C. Y., Dai, W. S., Tseng, J. K., ... & Cheng, H. C. “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor”. Thin Solid Films, 529, 173-176, 2013.
校內:2029-08-05公開