簡易檢索 / 詳目顯示

研究生: 巫雅婕
Wu, Ya-Jie
論文名稱: 利用單位歷線與退水法模擬洪水歷線之研究
Simulation of Flood Hydrograph using Unit Hydrograph and Recession Method
指導教授: 周乃昉
Chou, N.-F Frederick
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 分布型單位歷線河道演算水筒模式線性規劃法
外文關鍵詞: Distributed unit hydrograph, Muskingum method, tank model, linear programming
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   建立曾文水庫集水區之降雨-逕流模式,考量到曾文水庫集水區幅員廣大,降雨在時間及空間上皆有分布不均的問題,因此,本文建構一分布型單位歷線集水區模式,將曾文水庫集水區劃分成自上游到下游三大塊子集水區,並將曾文水庫蓄水面積獨立出來,求取各子集水區之平均降雨後,以集水區觀測流量進行單位歷線的計算。其中,以GIS軟體做出各子集水區相關雨量站之徐昇多邊形網,利用雨量站控制面積權重得到平均降雨量,並以美國自然資源保育局提出之NRCS曲線號碼法計算有效降雨量。採用直線法做基流分離,取降雨發生前三日平均流量為基流量,扣除基流量即為直接逕流量。
      本研究取歷年來其中6場逕流係數小於一的颱洪事件作為檢定案例,利用線性規劃法優選基期36小時的分布型單位歷線,比較不同洪峰時刻組合、目標函數加權門檻的退水流量效率係數,以得到最適合曾文水庫水區之分布型單位歷線,並以另外2場颱風事件作為驗證案例。
      本文目的在於利用單位歷線進行退水段之研究,以水筒模式模擬中間流改善模擬流量的不足,並在第二子集水區內以馬斯金更法進行河道演算。

    Considering the expansive area and uneven distribution of rainfall in time and space, the rainfall-runoff model of the Zengwun Reservoir watershed is established. Therefore, this paper builds up a distributed unit hydrograph model. The Zengwun Reservoir watershed area is divided into three sub-watershed from upstream to downstream, and the water storage area of Zengwun Reservoir is separated. After obtaining the average rainfall in each sub-watershed, the calculation of the unit hydrograph is performed by observed flow of whole watershed. Among them, The Thiessen's Polygon Method is built in GIS software, and the weighting of rainfall areas are controlled by the rainfall station. The effective rainfall is calculated by the NRCS curve number method proposed by the Natural Resources Conservation Service. For the observed flow, the straight-line method is used to separate the base flow, which is mean discharge of 3 days before rainfall.

    In this study, 6 typhoons are took as calibrated events. There are common that the runoff coefficients are less than one. Optimizing the distributed unit hydrograph with a base period of 36 hours by linear programming method, and then comparing the efficiency coefficients of different peak time combinations and weighting thresholds of the objective function to obtain the most suitable distributed unit hydrograph of the Zengwun reservoir watershed. Meanwhile, two other typhoon events are used as verified cases.

    The purpose of this paper is to use the unit hydrograph to study of the recession limb, simulate the inter flow in the tank model to improve the lack of simulated discharge, and perform the river routing in the second sub-catchment by the Muskingum method.

    摘要 I Abstract II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 問題背景 1 1.2 研究動機 1 1.3 研究目的 1 第二章 文獻回顧 2 2.1 單位歷線 2 2.2 分佈型單位歷線 2 2.3 集水區模式 3 2.4 降水損失 4 2.5 水筒模式 4 第三章 研究方法 5 3.1 基本定義 5 3.2 單位歷線分析 6 3.2.1 基流分離 6 3.2.2 平均雨量計算 7 3.2.3 有效降雨推估 8 3.3 模式架構 10 3.3.1 多子集水區計算概念 10 3.3.2 河道演算 13 3.3.3 應用線性規劃法計算多子集水區單位歷線 14 3.3.4 單一水筒模擬中間流 20 第四章 實例研究:曾文水庫集水區 24 4.1 集水區概述 24 4.1.1 雨量站 24 4.2 分析案例颱洪事件 28 4.2.1 颱洪事件流量資料 28 4.3 分佈型單位歷線建置 33 4.3.1 各子集水區分佈型單位歷線 33 4.3.2 最適分布型單位歷線之檢定 34 4.4 退水段檢討 44 4.5 模擬驗證 47 第五章 結論與建議 52 5.1 結論 52 5.2 建議 53 參考文獻 55 附錄一 應用矩陣法求解多子集水區之分布型單位歷線 i

    (1) 吳嘉文(2001)。利用集水區水位記錄改善分佈型之探討。成功大學水利及海洋工程學系學位論文,1-57。
    (2) 呂建華(1991)。應用遙測與地理資訊系統推求SCS曲線值。中華水土保持學報,89-98。
    (3) 李光敦(2012)。水文學。五南圖書出版股份有限公司。
    (4) 李肇文(1993)。森林試驗集水區退水歷線之研究。國立臺灣大學農學院實驗林研究報告,7。
    (5) 周乃昉,吳嘉文(2011)。100年度曾文水庫防洪運轉資訊系統委託維護。經濟部水利署南區水資源局。
    (6) 孫維廷(2001)。應用分佈式元件與水筒模式建立降雨-逕流模式之硏究。國立臺灣大學土木工程學研究所,1-107。
    (7) 徐百慶(2005)。曾文水庫集水區梅雨期間不同入滲過程分析方法比較。功大學水利及海洋工程學系學位論文,1-45。
    (8) 張正群(2017)。配合完整降雨-逕流模擬建置單位歷線。成功大學水利及海洋工程學系學位論文,1-77。
    (9) 張玲瑜(1994)。地理資訊系統推估水庫集水區逕流量研究-以翡翠水庫為例。農業工程研討會論文集,373-386。
    (10) 張德鑫,蔡西銘,鄭力嘉(2009)。地理資訊系統應用於石門水庫上游集水區。農業工程學報第55卷第4期。
    (11) 郭芯穎(2002)。森林集水區退水係數與降雨延時相關性之研究。國立臺灣大學森林學系學位論文,1-70。
    (12) 陳信雄,王志豪,郭芯穎(2004)。台灣中部小型集水區降雨與逕流退水歷線之分析法研究。中華林學季刊,407-415。
    (13) 陳瑞平,詹仕堅(2017)。單場事件降雨逕流關係與河川退水特性之研究。國立高雄師範大學地理學系,環境與世界第三十二期,1-22。
    (14) 菅原正巳(1972)。水文水櫃模式分析技術研習會講義。國立台灣大學土木工程研究所。
    (15) 蔡宜樺(1999)。三角形不規則網格之分布型降雨-逕流模式。台灣大學農業工程學研究所學位論文,1-100。
    (16) 羅鈞龍(2000)。台灣中部二個森林集水區之低水流量特性及儲水量對水平衡之影響。中興大學水土保持學系學位論文,1-71。
    (17) Bergström, S., (1992). The HBV model-its structure and applications. SMHI Reports RH, no. 4, Norrköping.
    (18) Bernard, M. M. (1935). An approach to determinate stream flow. Transactions of the American Society of Civil Engineers, 100(1), 347-362.
    (19) Booij, M. J. (2005). Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of hydrology, 303(1-4), 176-198.
    (20) Bruen, M., & Dooge, J. C. (1989). Unit hydrograph stability and linear algebra. Journal of Hydrology, 111(1-4), 377-390.
    (21) Bruen, M., & Dooge, J. C. I. (1984). An efficient and robust method for estimating unit hydrograph ordinates. Journal of Hydrology, 70(1-4), 1-24.
    (22) Chen, B., & Krajewski, W. F. (2015). Recession analysis across scales:The impact of both random and nonrandom spatial variability on aggregated hydrologic response. Journal of Hydrology, 523, 97-106.
    (23) Cho, Y., & Engel, B. A. (2018). Spatially distributed long‐term hydrologic simulation using a continuous SCS CN method‐based hybrid hydrologic model. Hydrological Processes, 32(7), 904-922.
    (24) Chow, V. T. (1964). Runoff Handbook of Applied Hydrology. , McGraw-Hill Book Company, New York.
    (25) Collins, W. T. (1939). Runoff distribution graphs from precipitation occurring in more than one time unit. Civ. Eng.(NY), 9(9), 559-561.
    (26) Deininger, R. A. (1969). Linear programing for hydrologic analyses. Water Resources Research, 5(5), 1105-1109.
    (27) Dietrich, C. R., & Chapman, T. G. (1993). Unit graph estimation and stabilization using quadratic programming and difference norms. Water resources research, 29(8), 2629-2635.
    (28) Dunne, T., & Leopold, L. B. (1978). Water in environmental planning. Macmillan.
    (29) Ghorbani, M. A., Singh, V. P., Sivakumar, B., Kashani, M. H., Atre, A. A., & Asadi, H. (2017). Probability distribution functions for unit hydrographs with optimization using genetic algorithm. Applied Water Science, 7(2), 663-676.
    (30) Hayashi, S., Murakami, S., & Watanabe, M. (2000). Characteristics of the stanford waiersehd model runoff process. Proceedings of hydraulic engineering, 44, 133-138.
    (31) Mays, L. W., & Coles, L. (1980, January). Optimization of unit hydrograph determination. In ASCE J Hydraul Div (Vol. 106, No. 1, pp. 85-97). American Society of Civil Engineers (ASCE).
    (32) Mays, L. W., & Taur, C. K. (1982). Unit hydrographs via nonlinear programing. Water resources research, 18(4), 744-752.
    (33) McCuen, R. H. (1989). Hydrologic analysis and design (pp. 143-147). Englewood Cliffs, NJ: Prentice-Hall.
    (34) Menzel, L., & Bürger, G. (2002). Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). Journal of hydrology, 267(1-2), 53-64.
    (35) Muzik, I. (1996). Flood modelling with GIS‐derived distributed unit hydrographs. Hydrological processes, 10(10), 1401-1409.
    (36) Noto, L. V., & La Loggia, G. (2007). Derivation of a distributed unit hydrograph integrating GIS and remote sensing. Journal of Hydrologic Engineering, 12(6), 639-650.
    (37) Sherman, L. (1932). Stream flow from rainfall by the unit-graph method. Eng. News Record, 108, 501-505..
    (38) Yang, Z., & Han, D. (2006). Derivation of unit hydrograph using a transfer function approach. Water resources research, 42(1).
    (39) Yue, S., & Hashino, M. (2000). Unit hydrographs to model quick and slow runoff components of streamflow. Journal of Hydrology, 227(1-4), 195-206.
    Zhao, B., & Tung, Y. K. (1994). Determination of optimal unit hydrographs by linear programming. Water resources management, 8(2), 101-119

    下載圖示 校內:2024-01-28公開
    校外:2024-01-28公開
    QR CODE