| 研究生: |
翁德名 Weng, Te-Ming |
|---|---|
| 論文名稱: |
氮化硼塗料開發與氮化鋁之燃燒合成及表面改質製程研究 Process Development for Boron Nitride Coating and Combustion Synthesis of Aluminum Nitride and its Surface Treatment |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 氮化硼塗料 、氮化硼 、氮化鋁 、燃燒合成 、表面改質 |
| 外文關鍵詞: | Boron nitride coatings, Boron nitride, Aluminum nitride, Combustion synthesis, Surface treatment |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要進行兩項研究: 一為氮化硼塗料開發,另一為氮化鋁之燃燒合成及表面改質製程研究。氮化硼具有耐高溫、防沾黏金屬液等特性,故可做成塗料供冶金相關產業應用。本研究開發之氮化硼塗料為水性塗料,採用PVA和Al(H2PO4)3作為其常溫和高溫黏結劑,以使塗層具備良好的附著度與機械強度。吾人採用ASTM D 3359 Test Method B之百格測試,量測塗層的附著度等級。本研究探討塗料成份組成及製程條件對塗層附著度及機械強度之影響。此外,藉由SEM、EDS分析可證實含Al(H2PO4)3之塗料在400℃固化熱處理後,會經脫水反應形成不同結晶相或非結晶相的磷酸鋁鹽類,此鹽類會藉由其反應機制來固化塗層,以增強氮化硼對基材的附著度。在氮化鋁之燃燒合成及表面改質製程研究方面,本研究發現本實驗室一批次生產5kg的製程,若使用高純度氮氣且壓力為0.6MPa,可獲得更多最高之轉化率及最低之氧含量的AlN。在改質方面,本研究發現研磨中改質之AlN具有接近研磨後改質的AlN之抗濕能力,且研磨後以室溫改質之AlN具有與加熱至60℃改質之AlN相當之抗濕效果。這些發現將有助於AlN表面改質之製程簡化及成本降低。
This study was divided into two parts, one was process development for boron nitride coating, another was combustion synthesis of aluminum nitride and its surface treatment. Boron nitride had many good properties like excellent thermal stability and poor wettability against metal melts, so it can be used to produce coatings applied in metallurgy industries. In this research, we chose water as liquid carrier, PVA and Al(H2PO4)3 as binder for better adhesion and mechanical strength for boron nitride coatings. The adhesion of coating layer was measured with ASTM D 3359 Test Method B. This research explored the influence of composition of coatings and process conditions on adhesion and mechanical strength of coating. In addition, it was proved that heating of the coating layer containing Al(H2PO4)3 at 400℃ caused dehydration and formation of crystalline and amorphous aluminum phosphates by SEM and EDS analysis. These aluminum phosphates can seal the coating due to its reaction mechanism, and enhance adhesion of boron nitride on the substrates. In the study of combustion synthesis of aluminum nitride and its surface treatment, it found that if it synthesized 5kg level of AlN with high-purity nitrogen in 0.6MPa, and it can get more products of AlN with lowest O% and highest conversion. In surface treatment part, it found that the moisture resistance of AlN treated from surface treatment during grinding process was close to that of AlN treated from surface treatment after grinding process, and treating AlN after grind without heating had almost the same effect as treating AlN at 60℃. These findings will be helpful for simplifying the surface treatment process of AlN and reducing costs.
1. 汪建民, 陶瓷技術手冊Ceramic technology handbook, 中華民國產業科技發展協會, pp.781-783, 1994.
2. 劉宇桓、劉如熹, 神奇的陶瓷材料, 科學發展月刊, 408, 2006.
3. H. K. Sander, “High-tech ceramics,” in C&E News, ed, July 9, 1984.
4. 吳朗, 電子陶瓷-入門, 1992.
5. cited; Available from: https://www.sciencelearn.org.nz/images/2208-boron-nitride
6. R. T. Paine and C. K. Narula, “Synthetic routes to boron nitride”, Chemical Reviews, Vol.90, No.1, pp.73-91, 1990.
7. A. Lipp, K.A. Schwetz, and K. Hunold, “Hexagonal boron nitride: Fabrication, properties and applications”, J Eur Ceram Soc., Vol.5, No.1, pp.3-9, 1989.
8. Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, H. Nishikawa, “Boron nitride as a lubricant additive”, Wear, Vol.232, No.2, pp.199-206, 1999.
9. E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, “Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride”, Physical Review B, Vol.13, No.10, pp.4607-4611, 1976.
10. Y. Xu and D. D. L. Chung, “Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Composite Interfaces, Vol.7, No.4, pp.243-256, 2000.
11. X. Wang, A. Pakdel, J. Zhang, Q. Weng, T. Zhai, C. Zhi, D.Golberg, and Y. Bando, “Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties”, Nanoscale Research Letters, Vol.7, pp.662, 2012.
12. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, and D. Golberg, “Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as Fillers, Advanced Functional Materials, Vol.19, No.12, pp.1857-1862, 2009.
13. C. Zhi, Y. Xu, Y. Bando, and D. Golberg, “Highly thermo-conductive fluid with boron nitride nanofillers”, ACS Nano, Vol.5, No.8, pp.6571-6577, 2011.
14. G. Postole, A. Gervasini, C. Guimon, A. Auroux, and B. Bonnetot, “Influence of the preparation method on the surface characteristics and activity of boron-nitride-supported noble metal catalysts”, Journal of Physical Chemistry B, Vol.110, No.25, pp.12572-12580, 2006.
15. G. Postole, A. Gervasini, M. Caldararu, B. Bonnetot, and A. Auroux, “Is BN an appropriate support for metal oxide catalysts?”, Applied Catalysis A-General, Vol.325, No.2, pp.227-236, 2007.
16. G. Postole, M. Caldararu, N. I. Ionescu, B. Bonnetot, A. Auroux, and C. Guimon, “Boron nitride: A high potential support for combustion catalysts”, Thermochimica Acta, Vol.434, No.1-2, pp.150-157, 2005.
17. Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, “Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure”, Science, Vol.317, No.5840, pp.932-934, 2007.
18. Y. -C. Zhu, Y. Bando, D. -F. Xue, T. Sekiguchi, D. Golberg, F. -F. Xu, and Q. –L. Liu, “New boron nitride whiskers: showing strong ultraviolet and visible light luminescence”, Journal of Physical Chemistry B, Vol.108, No.20, pp.6193-6196, 2004.
19. M. Engler, C. Lesniak, R. Damasch, B. Ruisinger, and J. Eichler, “Hexagonal boron nitride (hBN) - applications from metallurgy to cosmetics”, CFI-Ceramic Forum International, Vol.84, No. 12, pp.E49-E53, 2007.
20. R. Ma, Y. Bando, T. Sato, D. Golberg, H. Zhu, C. Xu, and D.Wu, “Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity”, Applied Physics Letters, Vol.81, No.27, pp.5225-5227, 2002.
21. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, “Boron nitride nanotubes”, Science, Vol.269, No.5226, pp.966-967, 1995.
22. T. Oku, I. Narita, A. Nishiwaki, and N. Koi. Atomic structures, electronic states and hydrogen storage of boron nitride nanocage clusters, nanotubes and nanohorns”, Defect and Diffusion in Ceramics-An Annual Retrospective Ⅵ, Vol.226-228, pp.113-140, 2004.
23. C. Tang, Y. Bando, Y. Huang, C. Zhi, and D. Golberg, “Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles, Advanced Functional Materials, Vol.18, No.22, pp.3653-3661, 2008.
24. G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui, and Q. Wang, “Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment”, Energy & Environmental Science, Vol.5, No.5, pp.7072-7080, 2012.
25. D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05—10 eV”, Physical review B, Vol.30, No.10, pp.6051-6052, 1984.
26. R. Geick, C. H. Perry, and G. Rupprecht, “Normal modes in hexagonal boron nitride”, Physical Review, Vol.146, No.2, pp.543, 1966.
27. T. Takahashi, H. Itoh, and M. Kuroda, “Structure and properties of CVD-BN thick film prepared on carbon steel substrate”, Journal of Crystal Growth, Vol.53, No.2, pp.418-422, 1981.
28. M. W. Chase, Jr., “NIST-JANAF Themochemical Tables”, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, pp.1-1951, 1998.
29. C. Zhi, Y. Bando, C. Tan, D. Golberg, “Effective precursor for high yield synthesis of pure BN nanotubes”, Solid State Communications, Vol.135, No.1-2, pp.67-70, 2005.
30. S. J. Yoon and A. Jha, “Vapour-phase reduction and the synthesis of boron-based ceramic phases. Part Ⅰ The phase equilibria in the B-C-N-O system”, Journal of Materials Science, Vol.30, No.3, pp.607-614, 1995.
31. F. L. Deepak, C. P. Vinod, K. Mukhopadhyay, A. Govindaraj, and C. N. R. Rao, “Boron nitride nanotubes and nanowires”, Chemical Physics Letters, Vol.353, No.5-6, pp.345-352, 2002.
32. 徐煜翔, “燃燒合成氮化硼之製程開發”, 國立成功大學博士論文, 2015.
33. L. M. Sheppard, “Aluminum nitride. A versatile but challenging material”, American Ceramic Society Bulletin, Vol.69, No.11, pp.1801-1812, 1990.
34. N. Kuramoto, H. Taniguchi, and I. Aso, “Development of translucent aluminum nitride ceramics”, American Ceramic Society Bulletin, Vol.68, No.4, pp.883-887, 1989.
35. J. C. Nipko and C.-K. Loong, “Phonon excitations and related thermal properties of aluminum nitride”, Physical Review B, Vol.57, No.17, pp.10550-10554, 1998.
36. G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, “The intrinsic thermal conductivity of AlN”, Journal of Physics and Chemistry of Solids, Vol.48, No.7, pp.641-647, 1987.
37. E. Man, F. Yan, Ame. Cera. Soc., Inc. Vol.26, pp.19-54, 1994.
38. F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, “High thermal conductivity aluminum nitride ceramic substrates and packages”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, No.2, pp.313-319, 1990.
39. T. Watari, T. Akizuki, H. Ikeda, T. Torikai, and O. Matsuda, “Shape of AlN powders prepared by vapor phase reaction of AlCl3·NH3- NH3-N2 system”, Journal of the Ceramic Society of Japan, Vol.97, No.8, pp.864-867, 1989.
40. G. Selvaduray and L. Sheet, “Aluminum nitride-review of synthesis methods”, Materials Science and Technology, Vol.9, No.6, pp.463-473, 1993.
41. F. J.-H. Haussonne, “Review of the synthesis methods for AlN”, Materials and Manufacturing Processes, Vol.10, No.4, pp.717-775, 1995.
42. N. Kuramoto and H. Taniguchi, “Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production”, U.S. Patent No.4,618,592, 1986.
43. R. Bachelard and P. Joubert, “Aluminum Nitride by Carbothermal Nitridation”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.109, pp.247-251, Mar 1989.
44. T. Okada, M. Toriyama, and S. Kanzaki, “Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts”, Journal of the European Ceramic Society, Vol. 20, No.6, pp.783-787, May 2000.
45. K. G. Nickel, R. Riedel, and G. Petzow, “Thermodynamic and Experimental Study of High-Purity Aluminum Nitride Formation from Aluminum Chloride by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.72, No.10, pp.1804-1810, Oct 1989.
46. R. Riedel and K. -U. Gaudl, “Formation and Characterization of Amorphous Aluminum Nitride Powder and Transparent Aluminum Nitride Film by Chemical Vapor Deposition”, Journal of the American Ceramic Society, Vol.74, No.6, pp.1331-1334, Jun 1991.
47. W. G. Moore, S. D. Dunmead, K. E. Howard, and K. C. Morse, “Aluminum nitride, aluminum nitride containing solid solutions and aluminum nitride composites prepared by combustion synthesis”, U.S. Patent No.5,649,278, 1997.
48. S. L. Chung, W. L. Yu, and C. N. Lin, “A self-propagating high-temperature synthesis method for synthesis of AlN powder”, Journal of Materials Research, Vol.14, No.5, pp.1928-1933, May 1999.
49. S. M. Bradshaw and J. L. Spicer, “Combustion synthesis of aluminum nitride particles and whiskers”, Journal of the American Ceramic Society, Vol.82, No.9, pp.2293-2300, Sep 1999.
50. M. Zhou, K. Li, D. Shu, B. D. Sun, and J. Wang, “Corrosion resistance properties of enamels with high B2O3-P2O5 content to molten aluminum” Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.346, No.1-2, pp.116-121, 2003.
51. 孫寶德, 張佼, 萬祥輝, 東青, 李飛, 韓延峰, 和董安平, “精鋁提純用鐵基坩堝防護複合塗層”, C.N. Patent No.104,889,036, 2016.
52. 張佼, 陳慧, 董錦芳, 東青, 孫寶德, 王俊, 疏達, 戴永兵, 李飛, 和高海燕, “基於偏析法的高純鋁提純裝置”, C.N. Patent No.101,748,291, 2012.
53. 王俊, 疏達, 李克, 倪紅軍, 張佼, 和孫寶德, “耐鋅液腐蝕的塗層及其使用方法”, C.N. Patent No.1,235,702, 2006.
54. S. Rudolph, “Boron nitride release coatings”, Aluminum Cast House Technology, Proceedings of the seventh Australian Asian Pacific Conference, Australia, Sept 23-26, P. R. Whiteley Eds., TMS: USA, 2001.
55. J. Eichler and C. Lesniak, “Boron nitride (BN) and BN composites for high-temperature applications”, Journal of the European Ceramic Society, Vol.28, No.5, pp.1105-1109, 2008.
56. C. Zhang, Y. He, Y. Zhan, L. Zhang, H. Shi, and Z. Xu, “Poly(dopamine) assisted epoxy functionalization of hexagonal boron nitride for enhancement of epoxy resin anticorrosion performance”, Polymers for Advanced Technologies, Vol.28, No.2, pp.214-221, 2017.
57. F. Mahvash, S. Eissa, T. Bordjiba, A. C. Tavares, T. Szkopek, and M. Siaj, “Corrosion resistance of monolayer hexagonal boron nitride on copper”, Scientific Reports, Vol.7, pp.42139, 2017.
58. M. Cui, S. Ren, J. Chen, S. Liu, G. Zhang, and H. Zhao, “Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets”, Applied Surface Science, Vol.397, pp.77-86, 2017.
59. E. Husain, T. N. Narayanan, J. J. T. -Tijerina, S. Vinod, R. Vajtai, and P. M. Ajayan, “Marine Corrosion Protective Coatings of Hexagonal Boron Nitride Thin Films on Stainless Steel”, ACS Applied Materials & Interfaces, Vol.5, No.10, pp.4129-4135, 2013.
60. M. Vippola, S. Ahmaniemi, J. Keränen, P. Vuoristo, T. Lepistö, T. Mäntylä, and E. Olsson, “Aluminum phosphate sealed alumina coating: characterization of microstructure”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.323, No.1-2, pp.1-8, 2002.
61. D. Chen, L. He, and S. Shang, “Study on aluminum phosphate binder and related Al2O3-SiC ceramic coating”, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.348, No.1-2, pp.29-35, 2003.
62. J. Subrahmanyam and M. Vijayakumar, “Self-propagating high-temperature synthesis”, Journal of Materials Science, Vol.27, No.23, pp.6249-6273, Dec 1 1992.
63. A. G. Merzhanov, “Self-propagating high-temperature synthesis: Twenty years of research and findings”, Combustion and Plasma Synthesis of High-Temperature materials, pp.1-53, 1990.
64. Z. A. Munir, “Synthesis of high-temperature materials by self-propagating combustion methods”, American Ceramic Society Bulletin, Vol.67, No.2, pp.342-349, Feb 1988.
65. L. M. Sheppard, “Powders that Explode into materials”, Adv. Mater. and Process, Vol.129, No. pp.25-32, 1986.
66. J. B. Holt and S. D. Dunmead, “Self-heating synthesis of materials”, Annual Review Materials Science, Vol.21, pp.305-334, 1991.
67. B. I. Khaikin and A. G. Merzhanov, “Theory of thermal propagation of a chemical reaction front”, Combustion Explosion and Shock Waves, Vol.2, No.3, pp.22-&, 1966.
68. A. G. Strunina, T. M. Martem’yanova, V. V. Barzykin, and V. I. Ermakov, “Ignition of gasless systems by a combustion wave”, Combustion Explosion and Shock Waves, Vol.10, No.4, pp.449-455, 1974.
69. B. V. Novozhilov, “The rate of propagation of the front of an exothermic reaction in a condensed phase”, Dokl. Akad. Nauk SSSR, Vol.141, pp.151-153, 1961.
70. A. Varma and J. -P. Lebrat, “Combustion synthesis of advanced materials”, Chemical Engineering Science, Vol.47, No.9-11, pp.2179-2194, 1992.
71. J. B. Holt and Z. A. Munir, “Combustion synthesis of titanium carbide: theory and experiment”, Jounal of Materials Science, Vol.21, No.1, 251-259, 1986.
72. A. G. Merzhanov, “The theory of stable homogeneous combustion in condensed substances”, Combustion and Flame, Vol.13, No.4, pp.143-156, 1969.
73. J. Karpinski and S. Porowski, “High pressure thermodynamics of GaN”, Journal of Crystal Growth, Vol.66, pp.11-20, 1984.
74. W. -C. Lee, C. -L. Tu, C. -Y. Weng, and S. L. Chung, “A novel process for combustion synthesis of AlN Powder”, Journal of Materials Research, Vol.10, No.3, pp.774-778, Mar 1995.
75. A. S. Mukas’yan, V. M. Martynenko, A. G. Merzhanov, I. P. Borovinskaya, and M. Yu. Blinov, “Mechanism and principles of silicon combustion in nitrogen”, Combustion Explosion and Shock Waves, Vol.22, No.5, pp.534-540, Sep-Oct 1986.
76. Z. A. Munir and J. B. Holt, “The combustion synthesis of refractory nitrides Part 1 Theoretical analysis, Journal of Materials Science, Vol.22, No.2, pp.710-714, 1987.
77. cited; Available from: http://kinetics.nist.gov/janaf/.
78. 黃其清, “燃燒合成製程研究: 氮化鋁、氮化硼粉體之合成及鈦+碳/鈦+鋁系統之反應機構”, 國立成功大學博士論文, 1997.
79. A. Atkinson, A. J. Moulson, and E. W. Roberts, “Nitridation of High‐Purity Silicon”, Journal of the American Ceramic Society, Vol.59, No.7‐8, pp.285-289, 1976.
80. D. Hotza, O. Sahling, and P. Greil, “Hydrophobing of aluminum nitride powders”, Journal of Materials Science, Vol. 30, No.1, pp.127-132, 1995.
81. K. Krnel and T. Kosmač, “Aqueous Processing of AlN Powder”, Materials Science Forum, Vol.554, pp.189-196, 2007.
82. S. Fukumoto, T. Hookabe, and H. Tsubakino, “Hydrolysis behavior of aluminum nitride in various solutions”, Journal of Materials Science, Vol.35, No.11, pp.2743-2748, 2000.
83. Y. Nagai and G. -C. Lai, “Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder”, Journal of the Ceramic Society of Japan, Vol.105, No.3, pp.197-200, 1997.
84. 許倍華, “氮化鋁粉體的表面改質技術開發”, 國立成功大學碩士論文, 2011.
85. S. -Y. Wu, Y. -L. Huang, C. -C. M. Ma, S. -M. Yuen, C. -C. Teng, and S. -Y. Yang, “Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites”, Composites Part A-Applied Science and Manufacturing, Vol.42, No.11, pp.1573-1583, 2011.
86. S. -Y. Wu, Y. -L. Huang, C. -C. M. Ma, S. -M. Yuen, C. -C. Teng, S. -Y. Yang, and C. H. Twu, “Mechanical, thermal and electrical properties of multi-walled carbon nanotube/aluminium nitride/polyetherimide nanocomposites”, Polymer International, Vol.61, No.7, pp.1084-1093, 2012.
87. C. -T. Lin, H. -T. Lee, J. -K. Chen, “Synthesis and characterization of molybdenum /phenolic resin composites binding with aluminum nitride particles for diamond cutters”, Applied Surface Science, Vol.284, pp.297-307, 2013.
88. ASTM Test Method D 3359-17, “Standard Test Methods for Rating Adhesion by Tape Test”, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2017.
89. H. Shen, J. Guo, H. Wang, N. Zhao, and J. Xu, “Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure” ACS Applied Materials & Interfaces, Vol.7, No.10, pp.5701-5708, 2015.
90. 陳俊霖, “氮化鋁之燃燒合成製程改良及量產技術研究”, 國立成功大學碩士論文, 2016.
91. S. F. Bartram and G. A. Slack, “Al10N8O3 and Al9N7O3, two new repeated-layer structures in the AlN-Al2O3 system”, Acta Crystallographica Section B-Structural Science, Vol.35, No.SEP, pp.2281-2283, 1979.
92. T. Asaka, H. Banno, S. Funahashi, N. Hirosaki, and K. Fukuda, “Electron density distribution and crystal structure of 27R-AlON, Al9O3N7”, Journal of Solid State Chemistry, Vol.204, pp.21-26, 2013.
93. H. Banno, S. Funahashi, T. Asaka, N. Hirosaki, and K. Fukuda, “Disordered crystal structure of 20H-AlON, Al10O3N8”, Journal of Solid State Chemistry, Vol.230, pp.149-154, 2015.
94. L. Qiao, S. Chen, J. Zheng, L. Jiang, and Shenglei Che, “Preparation and formation mechanism of aluminum nitride ceramic particles from large aluminum powder by self-propagating high temperature synthesis” Advanced Powder Technology, Vol.26, No.3, pp.830-835, 2015.
95. J. Shin, D. -H. Ahn, M. -S. Shin, and Y. -S. Kim, "Self-Propagating High-Temperature Synthesis of Aluminum Nitride under Lower Nitrogen Pressures”, Journal of the American Ceramic Society, Vol.83, No.5, pp. 1021-1028, 2000.
96. 林華蒼, “氮化鋁與氮化硼之表面改質及高導熱複合材料之製程開發”, 國立成功大學碩士論文, 2015.
97. 賴俊宏, “燃燒合成氮化鋁製程改良及量產技術開發”, 國立成功大學碩士論文, 2012.
校內:2022-08-09公開