| 研究生: |
郭仲強 Kuo, Chung-Chiang |
|---|---|
| 論文名稱: |
利用固相合成法製備YTiNbO6及其光譜性質之研究 Preparation and Spectroscopic property of YTiNbO6 by Solid-State Reaction |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 螢光粉 、黑稀金礦結構 |
| 外文關鍵詞: | phosphor, euxenite structure |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以固相合成法製備YTiNbO6:RE(RE=Dy、Er、Pr)之螢光粉,及針對YTiNbO6:Dy同時添加Ta5+離子進行共摻雜,探討其材料合成、摻雜濃度、主體變化、燒結條件對螢光材料的晶體結構及螢光性質的影響。
由實驗可知,利用固相合成製備YTiNbO6:RE,在1300℃可得穩定的Euxenite相之YTiNbO6 (PDF no.83.1318) ,並由吸收光譜可得光學能隙(band-gap)Eg=3.65eV(339.7nm)。YTiNbO6:Dy在以353nm為激發光源激發下,可同時發出482nm(4F9/2→6H15/2)的藍光和579nm(4F9/2→6H13/2)的黃光,以1300℃煆燒24小時的YTiNbO6:0.05Dy螢光粉體具有最佳的發光強度,色度座標為(0.31,0.37),坐落於白光區內。而YTiNbO6:Dy、Ta在以基質(290nm)激發下,可發現除了來自Dy3+離子4f軌域間的電子躍遷,尚有一來自主體材料中NbO6所引發的寬帶發光,範圍在400~670nm。且隨著Ta5+離子的摻雜,寬帶發光的強度隨之增強,直至Ta5+完全取代Nb5+時,寬帶發光具有最佳發光強度。這代表在晶格中TaO6原子團比NbO6更能貢獻在此寬帶發光上。
YTiNbO6:Er螢光粉體於378nm紫外光源激發下,其放射光主要為520~570nm的黃綠光(2H11/2→4I15/2、4S3/2→4I15/2),其發光強度隨Er3+離子摻雜濃度增加而提升,並於摻雜濃度為10mol%時,螢光粉體具有最佳的發光強度,其色度座標為(0.29, 0.67),坐落於黃綠光區。YTiNbO6:Pr螢光粉體於491nm藍光光源激發下,發光集中在585~645nm的紅光,分別對應到1D2→3H4及3P0→3H6的能階躍遷之發光,摻雜Pr3+離子濃度為0.5mol%之螢光粉體具有最佳的發光強度,CIE色度座標為(0.67,0.33) ,坐落於紅光區。
YTiNbO6:RE(RE=Dy、Er、Pr) and YTiNbO6:(Dy,Ta) phosphors were synthesized by solid state reaction in this work. The effects of rare earth ion concentration, distortion of host, sintering temperature, and the grain size, and morphology on the photoluminescent properties were investigated and optimized.
YTiNbO6:RE compounds of the Euxenite structure (PDF no.83.1318) were successfully synthesized by sintering at 1300℃. The fundamental absorption edge was calculated from the absorption spectra to be at 339.7nm, corresponding to the band-gap energy of 3.65eV. Under the excitation wavelength of 353nm, the dominant emission clusters were located around 482nm and 579nm, arising from the Dy3+ transitions 4F9/2→6H15/2 and 4F9/2→6H13/2 in YTiNbO6:Dy. The optimum doping level of Dy3+ in YTiNbO6:Dy was found to be 5mol%. The CIE chromaticity coordinate was at (0.31,0.37) for YTiNbO6:Dy, corresponding to a color tone of near-white. Under the charge-transfer excitation at 290nm, a broad emission at 400~670nm was observed in addition to the sharp lines from the Dy3+ transitions. This broad emission is thought to come from the NbO6 group of the host. When Nb was substituted by Ta, the road emission was increased with the Ta concentration and reached maxima for the pure Ta compound, i.e. YTiTaO6:Dy, indicating that TaO6 emits more efficient than NbO6 at this wavelength region.
The optical spectra of YTiNbO6:Er is dominated by the strong emission centered at 558nm. The optimum concentration for Er3+ was found to be 10 mol%. The CIE (x,y) coordinate of YTiNbO6:Er was calculated to be at (0.29,0.67), corresponding to the color tone of yellowish green. The optical spectra of YTiNbO6:Pr were characterized by a strong emission at the 615 nm, which came from the Pr3+ 1D2→3H4 and 3P0→3H6 transitions. The optimum concentration for Pr3+ was determined to be 0.5 mol%, and the (x,y) coordinate was at (0.67,0.33), having the red color.
Keyword: phosphor, euxenite structure
[1]劉如熹, 林益山, 康佳正, "白光發光二極體使用螢光粉專利解析", 全華圖書, (2005).
[2]S. Solomon, M. Kumar, K. P. Surendran, M. T. Sebastian, P. Mohanan, "Synthesis, characterization and properties of [RE1-xREx']TiNbO6 dielectric ceramics", Materials Chemistry and Physics, 67, 291-293, (2001).
[3]X. Qi, C.-M. Liu, C.-C. Kuo, "Pr3+ doped LaTiNbO6 as a single phosphor for white LEDs", Journal of Alloys and Compounds, 492, L61-L63, (2010).
[4]Q. Ma, Y. Zhou, A. Zhang, M. Lu, G. Zhou, C. Li, "Synthesis and optical properties of novel red phosphors YNbTiO6:Eu3+ with highly enhanced brightness by Li+ doping", Solid State Sciences, 11, 1124-1130, (2009).
[5]X. Qi, R. Illingworth, H. G. Gallagher, T. P. J. Han, B. Henderson, "Potential laser gain media with the stoichiometric formula RETiNbO6", Journal of Crystal Growth, 160, 111-118, (1996).
[6]X. Qi, H. G. Gallagher, T. P. J. Han, B. Henderson, "Modified Czochralski growth and characterization of RETiNbO6 crystals", Journal of Crystal Growth, 180, 73-80, (1997).
[7]X. Qi, T. P. J. Han, H. G. Gallagher, B. Henderson, "Energy upconversion processes in Er3+ and Nd3+ doped RETiNbO6 crystals", Optics Communications, 140, 65-69, (1997).
[8]Q. Ma, A. Zhang, M. Lü, Y. Zhou, Z. Qiu, G. Zhou, "Novel Class of Aeschynite Structure LaNbTiO6-Based Orange-Red Phosphors via a Modified Combustion Approach", The Journal of Physical Chemistry B, 111, 12693-12699, (2007).
[9]蘇勉曾, 吳世康, "螢光材料", 發光材料, 第四卷, (1996).
[10]J. E. Yang, The Application and Investigation of Luminescence Materials in Electronic Industry, in: Technical Report of ITRI, Hsinchu, Taiwan, 1992.
[11]S. A. Cotton, "Lanthanides and Actinides", Macmillan, London, (1991).
[12]G. H. Dieke, "Spectra and Energy Levels of Rare Earth ions in Crystals", Interscience, New York, (1968).
[13]C. S. C. Nin Chau and D, Phosphor global summit, in: Sylvania, 2006.
[14]J. R. Lakowicz, "Principles of fluorescence spectroscopy, 2nd ed", Plenum Publishers, New York, (1999).
[15]L. E. B. J. Garcia Sole, D. Jaque, "An Introduction to the Optical Spectroscopy of Inorganic Solids", John Wiley & Sons, Ltd, Spain, p. 188~190, (2004).
[16]L. Smentek-Mielczarek, B. Andes Hess, "Third-order electron-correlation and crystal-field contributions to the amplitudes of two-photon absorption in fN systems", Physical Review B, 36, 1811, (1987).
[17]M. C. Downer, " in Laser Spectroscopy of Solids II", Springer, Berlin, (1989).
[18]A. H. Kitai, "Visible luminescence – Solid state materials & applications", Chapman & Hall, London, (1992).
[19]R. C. Ropp, "Luminescence and the Solid State, Second Edition", Elsevier Science, Amsterdam, (2004).
[20]余樹楨, "晶體之結構與性質", 渤海堂文化公司, 台北, (1987).
[21]P. McMillan, "Vibrational spectroscopy in the mineral sciences", Reviews in Mineralogy and Geochemistry, 14, 9-63, (1985).
[22]JIS Z 8701:1995 色の表示方法—XYZ表色系およびX10Y10Z10表色系, in.
[23]劉如熹, 王健源, "白光發光二極體製作技術-21世紀人類的新曙光", 全華科技圖書, (2001).
[24]D. M. O. Beyer, Th. Woike and K. Buse, "Generation of small bound polarons in lithium niobate crystals on the subpicosecond time scale", Applied Physics B: Lasers and Optics, 83, 527-530, (2006).
[25]T.-H. Fang, Y.-J. Hsiao, Y.-S. Chang, L.-W. Ji, S.-H. Kang, "Luminescent and structural properties of MgNb2O6 nanocrystals", Current Opinion in Solid State and Materials Science, 12, 51-54, (2008).
[26]A. A. McConnell, J. S. Aderson, C. N. R. Rao, "Raman spectra of niobium oxides", Spectrochimica Acta Part A: Molecular Spectroscopy, 32, 1067-1076, (1976).
[27]P. S. Dobal, R. S. Katiyar, Y. Jiang, R. Guo, A. S. Bhalla, "Structural modifications in titania-doped tantalum pentoxide crystals: a Raman scattering study", International Journal of Inorganic Materials, 3, 135-142, (2001).
[28]L. H. Brixner, H. y. Chen, "On the Structural and Luminescent Properties of the M' LnTaO4 Rare Earth Tantalates", Journal of The Electrochemical Society, 130, 2435-2443, (1983).
[29]G. Blasse, "Vibrational spectra of yttrium niobate and tantalate", Journal of Solid State Chemistry, 7, 169-171, (1973).
[30]X. Xiao, B. Yan, "Chemical co-precipitation of hybrid precursors to synthesize Eu3+/Dy3+ activated YNbxP1-xO4 and YNbxV1-xO4 microcrystalline phosphors", Journal of Non-Crystalline Solids, 352, 3047-3051, (2006).
校內:2012-07-12公開